The answer is D. 6 . This is because it is a positive slope so you can cancel out B and C and then, you count your boxes
Answer:
The force is 
Explanation:
From the question we are told that
The mass of the block is 
The coefficient of static friction is 
The coefficient of kinetic friction is 
The normal force acting on the block is

substituting values


Given that the force we are to find is the force required to get the block to start moving then the force acting against this force is the static frictional force which is mathematically evaluated as

substituting values


Now for this block to move the force require is equal to
i.e

=> 
Answer:
t=40s,
Explanation:
If you can swim in still water at 0.5m/s, the shortest time it would take you to swim from bank to bank across a 20m wide river, if the water flows downstream at a rate of 1.5m/s, is most nearly:
from the question the swimmer will have a velocity which is equal to the sum of the speed of the water and the velocity to swi across the bank
Vt=v1+v2
the time is takes to swim across the bank will be
DY=Dv*t
DY=distance across the bank
Dv=ther velocity of the swimmer across the bank
t=20/ 0.5m/s,
t=40s, time it takes to swim across the bank
velocity is the rate of displacement
displacement is distance covered in a specific direction
Explanation:
It is given that,
Magnetic field, B = 0.1 T
Acceleration, 
Charge on electron,
Mass of electron,
(a) The force acting on the electron when it is accelerated is, F = ma
The force acting on the electron when it is in magnetic field, 
Here, 
So, 
Where
v is the velocity of the electron
B is the magnetic field


v = 341250 m/s
or

So, the speed of the electron is 
(b) In 1 ns, the speed of the electron remains the same as the force is perpendicular to the cross product of velocity and the magnetic field.