Answer:
(i) , (ii) , (iii)
Explanation:
(i) and represent the points where particle has a velocity of zero and spring reach maximum deformation, Given the absence of non-conservative force and by the Principle of Energy Conservation, the position where particle is at maximum speed is average of both extreme positions:
(ii) Maximum accelerations is reached at and .
(iii) Greatest net forces exerted on the particle are reached at and .
Answer:
Explanation:
The electric field created by an infinitely long wire can be found by Gauss' Law.
For the electric field at point (x,y), the superposition of electric fields created by both lines should be calculated. The distance 'r' for the first wire is equal to 'y', and equal to 'x' for the second wire.
A length of of electrified wire.
Answer:
Hi Carter,
The complete answer along with the explanation is shown below.
I hope it will clear your query
Pls rate me brainliest bro
Explanation:
The magnitude of the magnetic field on the axis of a circular loop, a distance z from the loop center, is given by Eq.:
B
= NμοiR² / 2(R²+Z²)³÷²
where
R is the radius of the loop
N is the number of turns
i is the current.
Both of the loops in the problem have the same radius, the same number of turns, and carry the same current. The currents are in the same sense, and the fields they produce are in the same direction in the region between them. We place the origin at the center of the left-hand loop and let x be the coordinate of a point on the axis between the loops. To calculate the field of the left-hand loop, we set z = x in the equation above. The chosen point on the axis is a distance s – x from the center of the right-hand loop. To calculate the field it produces, we put z = s – x in the equation above. The total field at the point is therefore
B
= NμοiR²/2 [1/ 2(R²+x²)³÷² + 1/ 2(R²+x²-2sx+s²)³÷²]
Its derivative with respect to x is
dB
/dx= - NμοiR²/2 [3x/ (R²+x²)⁵÷² + 3(x-s)/(R²+x²-2sx+s²)⁵÷²
]
When this is evaluated for x = s/2 (the midpoint between the loops) the result is
dB
/dx= - NμοiR²/2 [3(s/2)/ (R²+s²/4)⁵÷² - 3(s/2)/(R²+s²/4)⁵÷²
] =0
independent of the value of s.