Answer:
The answer to your question is letter A. r = 1.07 x 10⁻¹⁴ m
Explanation:
Data
F = 2 N
d = ?
q = 1.6 x 10 ⁻¹⁹ C
k = 8.987 Nm²/C²
Formula

Solve for r

Substitution

Simplification
r = 
r = 
Result
r = 1.07 x 10⁻¹⁴ m
As for me, there are two suitable answers for the question represented above and here is a short explanation why I consider these two to be correct :
D. The horizontal velocity of the projectile and <span>B. The length of time before it lands
</span>

-- this led me to answers! Hope everything is clear! Regards!<span>
</span>
Yes, with simple machines