Answer:
B
Step-by-step explanation:
Using the determinant to determine the type of zeros
Given
f(x) = ax² + bx + c ( a ≠ 0 ) ← in standard form, then the discriminant is
Δ = b² - 4ac
• If b² - 4ac > 0 then 2 real and distinct zeros
• If b² - 4ac = 0 then 2 real and equal zeros
• If b² - 4ac < 0 then 2 complex zeros
Given
f(x) = (x - 1)² + 1 ← expand factor and simplify
= x² - 2x + 1 + 1
= x² - 2x + 2 ← in standard form
with a = 1, b = - 2, c = 2, then
b² - 4ac = (- 2)² - (4 × 1 × 2) = 4 - 8 = - 4
Since b² - 4ac < 0 then the zeros are complex
Thus P(x) has no real zeros
Answer:
X=7 ST=11 RT=17
Step-by-step explanation:
RT=RS+ST. RS= 2(7)-8. ST=11
X+10=2x-8+11. =14-8=6. RT= x+10
X+10=2x+3. RS=6. 7+10=17
10=x+3. RT=17
X=7
Answer:
C times 23
Step-by-step explanation:
Answer:
it was helpful to you ✌︎✌︎✌︎✌︎✌︎✌︎✌︎➪♧︎︎︎

Answer:
D. The set that all points in a plane equidistant from a common point.
Step-by-step explanation: