Answer:
(a) The average speed is 0.85 milles/minute
(b) The average velocity is zero
Explanation:
In order to answer part (a) and (b) you have to apply the formulas for average speed and average velocity which are:
<em>-Average speed formula:</em>

where d is the total distance traveled and t is the tota time
Replacing the given values:
milles/minute
Notice that you have to replace the total distance, which is 14 milles for the go plus 14 milles for the return. The same for the total time.
<em>-Average velocity formula:</em>
V = Δx/Δt
Where V is the velocity vector, Δx is the displacement and Δt is the change in time
V= 
Where X2 is the final position and X1 is the initial position
In this case X1= 0 i and X2=0 i (i is the unit vector in the x direction). So, the displacement is zero.
Therefore, the average velocity is:
V= 0 i [milles/minute]
Answer:
a=g(sinθ-μkcosθ)
Explanation:
In an inclined plane the forces that interact with the object can be seen in the figure. The normal force, the weight w and the decomposition of the force vector of weight can be observed.
wx=m*g*sinθ
wy=m*g*cosθ
As the objects moves down an incline, acceleration in y axis is 0.
Then, by second Newton's Law:
Fy = m*ay
FN - m*g cos θ = 0,
FN=m*g cos θ
In x axis the forces that interacs are the x component of weight and friction force:
Fx = m*ax
mg sen u-FN*μk=m*a
Being friction force, Fr=FN*μk, we replace with its value in below formula:
m*g *sinθ-(m*g*cosθ*μk)=m*a
Then, isolating a:
a=(m*g sinθ-(m*g*cosθ*μk))/m
Solving, we have next equation:
a=g sinθ-(g*cosθ*μk)
Applying distributive property we have:
a=g*(sinθ-μk*cosθ)
Answer:
d = 0.247 mm
Explanation:
given,
λ = 633 nm
distance from the hole to the screen = L = 4 m
width of the central maximum = 2.5 cm
2 y = 0.025 m
y = 0.0125 m
For circular aperture
using small angle approximation

now,
d =0.247 x 10⁻³ m
d = 0.247 mm
the diameter of the hole is equal to 0.247 mm
Well latent fingerprints are made of oil and sweat and generally materials that you can't see very easily, so it should be that.
Hope this helps :D
Answer:
The kinetic energy is 
Explanation:
From the question we are told that
The radius of the orbit is 
The gravitational force is 
The kinetic energy of the satellite is mathematically represented as

where v is the speed of the satellite which is mathematically represented as

=> 
substituting this into the equation

Now the gravitational force of the planet is mathematically represented as

Where M is the mass of the planet and m is the mass of the satellite
Now looking at the formula for KE we see that we can represent it as
![KE = \frac{ 1}{2} *[\frac{GMm}{r^2}] * r](https://tex.z-dn.net/?f=KE%20%20%3D%20%20%5Cfrac%7B%201%7D%7B2%7D%20%2A%5B%5Cfrac%7BGMm%7D%7Br%5E2%7D%5D%20%2A%20r)
=> 
substituting values

