Answer:
1 sec
Explanation:
Horizontal distance (x) = 6m
Vertical distance (y) = 1.25m
Hang time is the duration the object is in the air before it reaches maximum height.
The time of free fall is given by
t = √2y/g
g = acceleration due to gravity
t = √(2*1.25)/9.8
t = √2.5/9.8
t = 0.5secs
Hang time = 2*0.5
= 1 sec
the difference between a resultant and equilibrant vector is that resultant vector is a direct quantity, one with both magnitude and direction, while the equilibrant vector is a force equal to, but opposite of, the resultant sum of vector forces, that force which balances other forces.
The relevant equation we can use in this problem is:
h = v0 t + 0.5 g t^2
where h is height, v0 is initial velocity, t is time, g is
gravity
Since it was stated that the rock was drop, so it was free
fall and v0 = 0, therefore:
h = 0 + 0.5 * 9.81 m/s^2 * (4.9 s)^2
<span>h = 117.77 m</span>
Answer:
The work done on the system is -616 kJ
Explanation:
Given;
Quantity of heat absorbed by the system, Q = 767 kJ
change in the internal energy of the system, ΔU = +151 kJ
Apply the first law of thermodynamics;
ΔU = W + Q
Where;
ΔU is the change in internal energy
W is the work done
Q is the heat gained
W = ΔU - Q
W = 151 - 767
W = -616 kJ (The negative sign indicates that the work is done on the system)
Therefore, the work done on the system is -616 kJ
Answer:
When I got this question I had to draw it out so if you have to do that, draw 3 stick figures holding hands, one representing the mother, father, and daughter. Then you write their weights on top of them and then draw an arrow pointing from the father to the mother.
Explanation:
use this formula :
=
then you fill it in :
=
= 
=

then you multiply that with the daughters weight :

and that's the answer :) : 37.89N