Answer:
Explanation:
El impulso aplicado a la pelota produce una variación en su momento lineal.
J = m (V -Vo)
Conviene elegir positivo el sentido de la velocidad final.
J = 0,100 kg [40 - (- 20)] m/s = 6 kg m/s
Saludos Herminio
 
        
             
        
        
        
Answer:
Making a quick cut left to intercept a pass
Explanation:
It takes more energe to do than running
 
        
             
        
        
        
Here we can use coulomb's law to find the force between two charges
As per coulombs law
]tex]F = \frac{kq_1q_2}{r^2}[/tex]
here we have




now by using the above equation we have


so here the force between two charges is of above magnitude and this will be repulsive force between them as both charges are of same sign.
 
        
             
        
        
        
Answer:
a = 2.94 m/s²
Explanation:
In order for the cup not to slip, the unbalanced force on cup must be equal to the frictional force:
Unbalanced Force = Frictional Force 
ma = μR = μW 
ma = μmg
a = μg
where,
a = maximum acceleration for the cup not to slip = ?
μ = coefficient of static friction = 0.3
g = acceleration due to gravity = 9.8 m/s²
Therefore,
a = (0.3)(9.8 m/s²)
<u>a = 2.94 m/s²</u>