Answer:
<em>The third piece moves at 6.36 m/s at an angle of 65° below the horizon</em>
Explanation:
Linear Momentum
It's a physical magnitude that measures the product of the velocity by the mass of a moving object. In a system where no external forces are acting, the total momentum remains unchanged regardless of the interactions between the objects in the system.
If the velocity of an object of mass m is
, the linear momentum is computed by
![\displaystyle \vec{P}=m.\vec{v}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7BP%7D%3Dm.%5Cvec%7Bv%7D)
a)
The momentum of the board before the explosion is
![\displaystyle \vec{P}_{t1}=m_t\ \vec{v}_o](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7BP%7D_%7Bt1%7D%3Dm_t%5C%20%5Cvec%7Bv%7D_o)
Since the board was initially at rest
![\displaystyle \vec{P}_{t1}=](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7BP%7D_%7Bt1%7D%3D%3C0%2C0%3E)
After the explosion, 3 pieces are propelled in different directions and velocities, and the total momentum is
![\displaystyle \vec{P}_{t2}=m_1\ \vec{v}_1\ +\ m_2\ \vec{v}_2+m_3\ \vec{v}_3](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7BP%7D_%7Bt2%7D%3Dm_1%5C%20%5Cvec%7Bv%7D_1%5C%20%2B%5C%20m_2%5C%20%5Cvec%7Bv%7D_2%2Bm_3%5C%20%5Cvec%7Bv%7D_3)
The first piece of 2 kg moves at 10 m/s in a 60° direction
![\displaystyle \vec{v}_1=(10\ m/s,60^o)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bv%7D_1%3D%2810%5C%20m%2Fs%2C60%5Eo%29)
We find the components of that velocity
![\displaystyle \vec{v}_1=](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bv%7D_1%3D%3C10%5C%20cos60%5Eo%2C10%5C%20sin60%5Eo%3E)
![\displaystyle \vec{v}_1=m/s](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bv%7D_1%3D%3C5%2C5%5Csqrt%7B3%7D%3Em%2Fs)
The second piece of 1.2 kg goes at 15 m/s in a 180° direction
![\displaystyle \vec{v}_2=(15,180^o)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bv%7D_2%3D%2815%2C180%5Eo%29)
Its components are computed
![\displaystyle \vec{v}_2=(15\ cos180^o,15\ sin180^o)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bv%7D_2%3D%2815%5C%20cos180%5Eo%2C15%5C%20sin180%5Eo%29)
![\displaystyle \vec{v}_2=(-15,0)\ m/s](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bv%7D_2%3D%28-15%2C0%29%5C%20m%2Fs)
The total momentum becomes
![\displaystyle P_{t2}=2+1.2+m_3\ \vec{v}_3](https://tex.z-dn.net/?f=%5Cdisplaystyle%20P_%7Bt2%7D%3D2%3C5%2C5%5Csqrt%7B3%7D%3E%2B1.2%3C-15%2C0%3E%2Bm_3%5C%20%5Cvec%7Bv%7D_3)
Operating
![\displaystyle P_{t2}=++m_3\ \vec{v}_3](https://tex.z-dn.net/?f=%5Cdisplaystyle%20P_%7Bt2%7D%3D%3C10%2C10%5Csqrt%7B3%7D%3E%2B%3C-18%2C0%3E%2Bm_3%5C%20%5Cvec%7Bv%7D_3)
Knowing the total momentum equals the initial momentum
![\displaystyle P_{t2}=+m_3\ \vec{v}_3=0](https://tex.z-dn.net/?f=%5Cdisplaystyle%20P_%7Bt2%7D%3D%3C-8%2C10%5Csqrt%7B3%7D%3E%2Bm_3%5C%20%5Cvec%7Bv%7D_3%3D0)
Rearranging
![\displaystyle m_3\ \vec{v}_3=](https://tex.z-dn.net/?f=%5Cdisplaystyle%20m_3%5C%20%5Cvec%7Bv%7D_3%3D%3C8%2C-10%5Csqrt%7B3%7D%3E)
Calculating
![\displaystyle m_3\ \vec{v}_3=](https://tex.z-dn.net/?f=%5Cdisplaystyle%20m_3%5C%20%5Cvec%7Bv%7D_3%3D%3C8%2C-17.32%3E)
This is the momentum of the third piece
b)
From the above equation, we solve for
:
![\displaystyle \vec{v}_3=\frac{1}{3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bv%7D_3%3D%5Cfrac%7B1%7D%7B3%7D%3C8%2C-17.32%3E)
![\displaystyle \vec{v}_3=m/s](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bv%7D_3%3D%3C2.67%2C-5.77%3Em%2Fs)
The magnitude of the velocity is
![\displaystyle \vec{v}_3|=\sqrt{2.67^2+(-5.77)^2}=6.36](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bv%7D_3%7C%3D%5Csqrt%7B2.67%5E2%2B%28-5.77%29%5E2%7D%3D6.36)
And the angle is
![\displaystyle tan\theta =\frac{-5.77}{2.67}=-2.161](https://tex.z-dn.net/?f=%5Cdisplaystyle%20tan%5Ctheta%20%3D%5Cfrac%7B-5.77%7D%7B2.67%7D%3D-2.161)
![\displaystyle \theta =-65.17^o](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Ctheta%20%3D-65.17%5Eo)
The third piece moves at 6.36 m/s at an angle of 65° below the horizon