Answer:
(a) 110 rev/ min
(b) 5/6
Explanation:
As per the conservation of linear momentum,
L ( initial ) = L ( final )
I' ω' = ( I' + I'' ) ωf
I' is the rotational inertia of first wheel and I'' is the rotational inertia of second wheel which is at rest.
(a)
So, ωf = I' ω' / ( I' + I'' )
As I'' = 5I'
ωf = I' ω' / ( I' + 5I' )
ωf = ω'/ 6
now we know ω' = 660 rev / min
therefore ωf = 660/6
= 110 rev/ min
(b)
Initial kinetic energy will be K'
K' = I'ω'² / 2
and final K.E. will be K'' = ( I' + I'' )ωf² / 2
K'' = ( I' + 5I' ) (ω'/ 6)²/ 2
K'' = 6I' ω'²/72
K'' = I' ω'²/ 12
therefore the fraction lost is
ΔK/K' = ( K' - K'' ) / K'
= {( I'ω'² / 2) - (I' ω'²/ 12)} / ( I'ω'² / 2)
= 5/6
Answer: 6.24 km
Explanation:
Given
The magnitude of the first vector(say) 
the magnitude of the second vector(say) 
the angle between them is 
The resultant vector magnitude is given by


Humid air has higher pressure because of the heaviness of the water