#include<studio.h>
int main( )
{
int n;
int a,b,c,d,x,y;
int avarage;
printf("enter value of n:\n");
scanf("%d",&n);
printf("enter value of a:\n,b:\n,c:\n,d:\n,x:\n,y:\n);
scan f("%d\%d\n%d\n%d\n%d\n%d\n",&a,b,c,d,x,y);
sum=(a+b+c+d+x+y);
avarage=(sum/n);
print f("%d",avarage);
if
{
n=positive interger
}
else
{
printf ("n must be positive");
}
return 0;
}
Answer:
40 kg.m/s
Explanation:
Momentum, p is defined as the product of mass and velocity of an object. Numerically, it is represented as, p=mv where m is mass of the object and v is the velocity in which the object moves, with keen observation on the direction before and after collision. Substituting 10 kg for m and 4 m/s for v then momentum, P=10*4=40 kg.m/s
You know from looking at the molecular formula<span> that one </span>molecule<span> of </span>H2SO4<span> contains 2 </span>atoms<span> of hydrogen, 1 atom of sulfur and 4 </span>atoms<span> of oxygen.</span>
That would be the dump truck. Momentum depends on how heavy a certain object is in motion. The more weight it has the harder it is to stop.
The work done by Joe is 0 J.
<u>Explanation</u>:
When a force is applied to an object, there will be a movement because of the applied force to a certain distance. This transfer of energy when a force is applied to an object that tends to move the object is known as work done.
The energy is transferred from one state to another and the stored energy is equal to the work done.
W = F . D
where F represents the force in newton,
D represents the distance or displacement of an object.
Force = 0 N, D = 20 cm = 0.20 m
W = 0
0.20 = 0 J.
Hence the work done by Joe is 0 J.