Answer:
"Magnitude of a vector can be zero only if all components of a vector are zero."
Explanation:
"The magnitude of a vector can be smaller than length of one of its components."
Wrong, the magnitude of a vector is at least equal to the length of a component. This is because of the Pythagoras theorem. It can never be smaller.
"Magnitude of a vector is positive if it is directed in +x and negative if is is directed in -X direction."
False. Magnitude of a vector is always positive.
"Magnitude of a vector can be zero if only one of components is zero."
Wrong. For the magnitude of a vector to be zero, all components must be zero.
"If vector A has bigger component along x direction than vector B, it immediately means, the vector A has bigger magnitude than vector B."
Wrong. The magnitude of a vector depends on all components, not only the X component.
"Magnitude of a vector can be zero only if all components of a vector are zero."
True.
Answer:
Balanced force
Explanation:
Balanced Forces, When forces are in balance, acceleration is zero. Velocity is constant and there is no net or unbalanced force. ... Although friction is acting on the person, there is no change in velocity and friction is not a net force in this case. Friction is only a net force if it changes the velocity of a mass.
Answer:
F = MA
Explanation:
OP you didn't give us any examples, but force equals mass times acceleration is Newton's First Law.
Dropping a ball (mass) from the top of a building can show gravity, a form of acceleration.
Answer:
The slope of a distance-time graph indicates the rate of change of distance and it is termed as speed.
pls mark as brainliest