Answer:
counting tree rings can indicate age
Explanation:
hope i helped at least a little bit :)
How much work in J does the string do on the boy if the boy stands still?
<span>answer: None. The equation for work is W = force x distance. Since the boy isn't moving, the distance is zero. Anything times zero is zero </span>
<span>--------------------------------------... </span>
<span>How much work does the string do on the boy if the boy walks a horizontal distance of 11m away from the kite? </span>
<span>answer: might be a trick question since his direction away from the kite and his velocity weren't noted. Perhaps he just set the string down and walked away 11m from the kite. If he did this, it is the same as the first one...no work was done by the sting on the boy. </span>
<span>If he did walk backwards with no velocity indicated, and held the string and it stayed at 30 deg the answer would be: </span>
<span>4.5N + (boys negative acceleration * mass) = total force1 </span>
<span>work = total force1 x 11 meters </span>
<span>--------------------------------------... </span>
<span>How much work does the string do on the boy if the boy walks a horizontal distance of 11m toward the kite? </span>
<span>answer: same as above only reversed: </span>
<span>4.5N - (boys negative acceleration * mass) = total force2 </span>
<span>work = total force2 x 11 meters</span>
Answer:
the mass of the lipid content, to the nearest hundredth of a kg, in this solution =0.46 kg
Explanation:
Total heat content of the fat = heat content of water +heat content of the lipids
Let it be Q
the Q= (mcΔT)_lipids + (mcΔT)_water
total mass of fat M= 0.63 Kg
Q= heat supplied = 100 W in 5 minutes
ΔT= 20°C
c_lipid= 1700J/(kgoC)
c_water= 4200J/(kgoC)
then,

solving the above equation we get
m= 0.46 kg
the mass of the lipid content, to the nearest hundredth of a kg, in this solution =0.46 kg
Answer:
A) The space time coordinate x of the collision in Earth's reference frame is
.
B) The space time coordinate t of the collision in Earth's reference frame is

Explanation:
We are told a rocket travels in the x-direction at speed v=0,70 c (c=299792458 m/s is the exact value of the speed of light) with respect to the Earth. A collision between two comets is observed from the rocket and it is determined that the space time coordinates of the collision are (x',t') = (3.4 x 10¹⁰ m, 190 s).
An event indicates something that occurs at a given location in space and time, in this case the event is the collision between the two comets. We know the space time coordinates of the collision seen from the reference frame of the rocket and we want to find out the space time coordinates in Earth's reference frame.
<em>Lorentz transformation</em>
The Lorentz transformation relates things between two reference frames when one of them is moving with constant velocity with respect to the other. In this case the two reference frames are the Earth and the rocket that is moving with speed v=0,70 c in the x axis.
The Lorentz transformation is




prime coordinates are the ones from the rocket reference frame and unprimed variables are from the Earth's reference frame. Since we want position x and time t in the Earth's frame we need the inverse Lorentz transformation. This can be obtained by replacing v by -v and swapping primed an unprimed variables in the first set of equations




First we calculate the expression in the denominator


then we calculate t




finally we get that

then we calculate x






finally we get that
