<u>Answer</u>
So this is the reaction that happens.
<span>C4H10 + O2 = CO2 + H2O </span>
<span>Balanced, it is </span>
<span>2C4H10 + 8O2 = 8CO2 + 10H2O </span>
<span>Given 1 kg or 1000 g of butane, use stoichiometry aka factor labeling aka conversions and mole ratios to get to grams of oxygen. </span>
<span>I'll do an example. Let's form water. Hydrogen is diatomic too. </span>
<span>2H2 + O2 = 2H2O </span>
<span>Given 1000 g of Hydrogen, I need to know how many grams of oxygen to use. To convert grams to moles,
I know that 1 mol of H2 equals 2.02 g. Then, for every mole of O2, there are 2 moles of H2. Then converting moles of O2 to grams, I know that one mole of it equals 32 grams. </span>
<span>[1000 g H2] x [1 mol H2/2.02 g H2] x [1 mol O2/2 mol H2] x [32 g O2/1 mol O2] </span>
<span>My answer would be 7.9 kg </span>
D. oxygen is used to break down glucose into energy
Explanation:
During respiration, oxygen is used to break down glucose into energy:
C₆H₁₂O₆ + O₂ → CO₂ + H₂O + energy
In the process of respiration, oxygen gas combines with glucose to liberate energy.
- Respiratory system in the body is responsible for the metabolic break down of food to provide energy for the working of the human body.
- Chemical energy in glucose is broken down to produce other forms of energy most especially heat.
- The by product is usually carbon dioxide and water vapor.
Learn more:
Respiration brainly.com/question/3447259
#learnwithBrainly
Answer:
138.96kJ is the maximum electrical work
Explanation:
The maximum electrical work that can be obtained from a cell is obtained from the equation:
W = -nFE
<em>Where W is work in Joules,</em>
<em>n are moles of electrons = 2mol e- because half-reaction of Zn is:</em>
Zn(s) → Zn²⁺(aq) + 2e⁻
F is faraday constant = 96500Coulombs/mol
E is cell potential = 0.72V
Replacing:
W = -2mol*96500Coulombs/mol*0.72V
W = - 138960J =
<h3>138.96kJ is the maximum electrical work</h3>
<em />
Answer:
B, D, E, C, A
Explanation:
We have 5 blocks with their respective masses and volumes.
Block Mass Volume
A 65.14 kg 103.38 L
B 0.64 kg 100.64 L
C 4.08 kg 104.08 L
D 3.10 kg 103.10 L
E 3.53 kg 101.00 L
The density (ρ) is an intensive property resulting from dividing the mass (m) by the volume (V), that is, ρ = m / V
ρA = 65.14 kg / 103.38 L = 0.6301 kg/L
ρB = 0.64 kg / 100.64 L = 0.0064 kg/L
ρC = 4.08 kg / 104.08 L = 0.0392 kg/L
ρD = 3.10 kg / 103.10 L = 0.0301 kg/L
ρE = 3.53 kg / 101.00 L = 0.0350 kg/L
The order from least dense to most dense is B, D, E, C, A
In order to determine the number of protons in 20.02 mol of Ne, we use Avogadro's number to convert the number of moles to number of atoms, 1 mol = 6.022 x 10^23 atoms. From there, we must know the number of protons in a Neon atom, which is 10. Thus, the formula will be:
(20.02 mol Ne)x(6.022 x 10^23 atoms/mol)x(10 protons/1 atom Ne) =
1.2056 x 10^26 protons