Answer:
1.a
2. b
Explanation:
Distillation is a process whereby a mixture of liquids having different vapor pressures is separated into its components. At first one might think that this would be quite simple: if you have a solution consisting of liquid A that boils at 50°C and liquid B with a boiling point of 90°C, all that would be necessary would be to heat the mixture to some temperature between these two values; this would boil off all the A (whose vapor could then be condensed back into pure liquid A), leaving pure liquid B in the pot. But that overlooks that fact that these liquids will have substantial vapor pressures at all temperatures, not only at their boiling points.
source: https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_Chem1_(Lower)/08%3A_Solutions/8.09%3A_Distillation
Answer:
The flow rate would be 22.5ml/hr
Explanation:
Volumetric flow rate = Mass flow rate ÷ density
Mass flow rate = 3mg/min = 3mg/min × 60min/1hr = 180mg/hr
Density = mass/volume = 2g/250ml = 0.008g/ml = 0.008g/ml × 1000mg/1g = 8mg/ml
Volumetric flow rate = 180mg/hr ÷ 8mg/ml = 22.5ml/hr
Over the ocean, the temperature rises much slower, because the water evaporates causing the hot molecules to go into the atmosphere, and the overall temperature of the water doesn't increase much, this causes the area without the water to be much hotter.
Answer:
A)
,
, 
A = 1.5×
, A = 1.9×
, A=1.5×
B) 4.469
Explanation:
From Arrhenius equation

where; K = Rate of constant
A = Pre exponetial factor
= Activation Energy
R = Universal constant
T = Temperature in Kelvin
Given parameters:




taking logarithm on both sides of the equation we have;

since we have the rate of two different temperature the equation can be derived as:


= 19846.04×7.544×
= 1.497
=
= 4.469
Answer:
The pendulum would stop swinging because the kinetic energy would slow down for the friction is causing it to slow. The energy would go into potential energy.