Answer:
3.91 L
Explanation:
Using the ideal gas law equation as follows:
PV = nRT
Where:
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
Based on the information given in this question,
P = 5.23 atm
V= ?
n = 0.831 mol
T = 27°C = 27 + 273 = 300K
Using PV = nRT
V = nRT/P
V = (0.831 × 0.0821 × 300) ÷ 5.23
V = 20.47 ÷ 5.23
V = 3.91 L
Basically since potassium chloride is an ionic compound as it consists of a metal and a nonmetal, the potassium atom will donate one of its valence electrons to chlorine that will accept it and as a result produce oppositely charged ions, where the K + ion and the Cl - ion will attract forming an ionic bond. The compound that results is potassium chloride.
A student builds a model of a race car. The scale is 1:15. In the scale model, the car is 8 cm tall. How tall is the actual car?
<h2>Answers:</h2>
<h3>A. 120 cm</h3>
#CarryOnLearning
Answer:
1L
Explanation:
First, let us calculate the number of mole present in 20g of NaOH. This is illustrated below:
Mass = 20g
Molar Mass of NaOH = 23 + 16 + 1 = 40g/mol
Number of mole =?
Number of mole = Mass /Molar Mass
Number of mole of NaOH = 20/40 = 0.5mol
From the question given, we obtained the following data:
Molarity = 0.5M
Mole = 0.5mole
Volume =?
Molarity = mole /Volume
Volume = mole /Molarity
Volume = 0.5/0.5
Volume = 1L
Answer:
Positive: a and b
Negative: c
Explanation:
The entropy (S) is the measure of the randomness of the system, and it intends to increase. The randomness can be determined by the energy of the molecules, their velocity and how distance they are between the other molecules.
When the entropy increases, ΔS is positive, when the entropy decreases, ΔS is negative. So, when gasoline mix with air in a car engine, the process intends to continue, the randomness increases and ΔS is positive. When hot air expands, the distance between the molecules increases, so ΔS is positive.
But, when humidity condenses, the molecules stay closer, so there's a decrease in the randomness, then ΔS is negative.