Answer:

Explanation:
M = Mass of Earth
G = Gravitational constant
R = Radius of Earth
The acceleration due to gravity on Earth is

On new planet

Dividing the two equations we get

The acceleration due to gravity on the other planet is 
There is no soil in a hole
;)
A jet fighter flies from the airbase A 300 km East to the point M. Then 350 km at 30° West of North.
It means : at 60° North of West. So the distance from the final point to the line AM is :
350 · cos 60° = 350 · 0.866 = 303.1 km
Let`s assume that there is a line N on AM.
AN = 125 km and NM = 175 km.
And finally jet fighter flies 150 km North to arrive at airbase B.
NB = 303.1 + 150 = 453.1 km
Then we can use the Pythagorean theorem.
d ( AB ) = √(453.1² + 125²) = √(205,299.61 + 15,625) = 470 km
Also foe a direction: cos α = 125 / 470 = 0.266
α = cos^(-1) 0.266 = 74.6°
90° - 74.6° = 15.4°
Answer: The distance between the airbase A and B is 470 km.
Direction is : 15.4° East from the North.
Is there any answers? Or is it asking you to choose?
The initial height of the first body is given by:

where
g is the gravitational acceleration
t is the time it takes for the body to reach the ground
Substituting t=1 s, we find

The second body takes takes t=2 s to reach the ground, so it was located at an initial height of

The second body started its fall 1 second before the first body, therefore when the second body started its fall, the first body was located at its initial height, i.e. at 4.9 m from the ground.