Not sure I think maybe its the second choice. Sorry cant be certain.
Answer:
We have a small circle, that is dilated by a factor of 5/3 creating a larger circle.
If the smaller circle has a diameter D, then after the dilation, the larger circle will have a diameter equal to: (5/3)*D
We know that the area of the larger circle is:
A = 100*pi cm^2.
And the area of a circle of diameter d, is:
a = pi*(d/2)^2
knowing that the diameter of the large circle is (5/3)*D, we can find the value of D.
A = pi*( (5/3)*D/2)^2 = 100*pi cm^2
let's solve this for D:
pi*( (5/3)*D/2)^2 = 100*pi cm^2
( (5/3)*D/2)^2 = 100 cm^2
( (5/3)*D/2) = √(100 cm^2) = 10cm
D/2 = (3/5)*10cm
D = 2*(3/5)*10cm = 12cm.
Then the area of the smaller circle will be:
a = pi*(D/2)^2 = pi*(12cm/2)^2 = pi*(6cm)^2 = pi*36 cm^2
and pi = 3.14
a = pi*36 cm^2 = 3.14*36cm^2 = 113.04 cm^2
Answer:
(6, -9)
Step-by-step explanation:
The transformation from point (-3, -3) to point (4, -5) is the same transformation from point (-1, -7) to the missing point.
Let's find the transformation from point (-3, -3) to point (4, -5).
x: 4 - (-3) = 7
y: -5 - (-3) = -2
Now we apply a transformation of 7 in x and -2 in y to (-1, -7).
(-1 + 7, -7 + (-2)) = (6, -9)
Answer: (6, -9)
Answer:
El ángulo formado entre las dos direcciones es aproximadamente 115º.
Step-by-step explanation:
Las direcciones dadas en el enunciado significan lo siguiente:
S32ºE - <em>32º al este del sur.</em>
E57ºN - <em>57º al norte del este.</em>
Vectorialmente hablando, cada dirección es la siguiente:
S32ºE


E57ºN


El ángulo formado entre los dos vectores unitarios (
), medido en grado sexagesimales, puede determinarse mediante la siguiente ecuación vectorial:

Donde:
- Norma de
.
- Norma de
.
Si sabemos que
,
,
y
, entonces el ángulo formado entre los dos vectores es:


El ángulo formado entre las dos direcciones es aproximadamente 115º.
Answer:
Angle ABC = 90°
Step-by-step explanation:
Angle AOC= 180°
so Angle ABC = 0.5 x AOC
or another way to explain is
Rule 1: Angles in semi circle are always 90°