Answer:
Ag⁺(aq) + Cl⁻(aq) → AgCl(s)
Explanation:
The silver nitrate, AgNO₃, dissolves in water as follows:
AgNO₃(aq) → Ag⁺(aq) + NO₃⁻(aq)
The Ag⁺ reacts with Cl⁻ producing AgCl(s), a white insoluble salt. The net ionic equation that describes the formation of the precipitate is:
<h3>Ag⁺(aq) + Cl⁻(aq) → AgCl(s)</h3><h3 /><h3 />
Answer:
0 M is the silver ion concentration in a solution prepared mixing both the solutions.
Explanation:

Moles of silver nitrate = n
Volume of the solution = 425 mL = 0.425 L (1 mL = 0.001 L)
Molarity of the silver nitrate solution = 0.397 M

Moles of sodium phosphate = n'
Volume of the sodium phosphate solution = 427 mL = 0.427 L (1 mL = 0.001 L)
Molarity of the sodium phosphate solution = 0.459 M


According to reaction, 3 moles of silver nitrate reacts with 1 mole of sodium phosphate, then 0.1687 moles of silver nitrate will recat with :
of sodium phosphate
This means that only 0.05623 moles of sodium phosphate will react with all the 0.1687 moles of silver nitrate , making silver nitrate limiting reagent and sodium phosphate as an excessive reagent.
So, zero moles of silver nitrate will be left in the solution after mixing of the both solutions and hence zero moles of silver ions will left in the resulting solution.
0 M is the silver ion concentration in a solution prepared mixing both the solutions.
Solids are compounds whose atomic bonds are rigid, which doesn't let the atoms move around freely
Every chemical equation adheres to the law of conservation of mass, which states that matter cannot be created or destroyed. ... When an equal number of atoms of an element is present on both sides of a chemical equation, the equation is balanced.
The subscript in a chemical formula is the number written next to the element at the bottom part. For example, the chemical formula of water is H₂O. The subscript of H is 2, while the subscript of O is 1. The subscript represents the number of a certain element in one particle of the compound. So, if you change the subscript, you also change the number of a certain element per compound. In other words, you change the ratio.