The pressure of the CO₂ = 0.995 atm
<h3>Further explanation</h3>
The complete question
<em>A student is doing experiments with CO2(g). Originally, a sample of gas is in a rigid container at 299K and 0.70 atm. The student increases the temperature of the CO2(g) in the container to 425K.</em>
<em>Calculate the pressure of the CO₂ (g) in the container at 425 K.</em>
<em />
<em />
Gay Lussac's Law
When the volume is not changed, the gas pressure is proportional to its absolute temperature

P₁=0.7 atm
T₁=299 K
T₂=425 K

<em />
C is the answer.
The temperature T<span> in degrees Celsius (°C) is equal to the temperature </span>T<span> in Kelvin (K) minus 273</span>°.
HEY DEAR..
The particles of light known as photon.
HOPE ITS HELPFULL
Answer:
What type of question is this?
Explanation:
Answer:
The correct option is;
A) 1 to 1.
Explanation:
A stab;e nuclei requires the presence of a neutron to accommodate the the protons repulsion forces within the nucleus. An increase in the number of protons should be accompanied by an even more instantaneous increase in the number of neutrons to balance the forces in the nucleus. If there is an excess of neutrons or a deficit in protons a state of unbalance exists in the nucleus, which results to nuclear instability.
Therefore, the ratio of neutrons to protons is an appropriate way in foretelling nuclear stability and a stable nuclei is known to have a proton to neutron ratio of 1:1 and the number of protons and neutrons in the stable nuclei are usually even numbers.