Answer:
3.0 L O₂
Explanation:
If CO reacts at STP, it means that there are 1.0 moles of CO. To find the moles of O₂, you need to use the mole-to-mole ratio from the given equation.
1.0 moles CO 1 mole O₂
---------------------- x --------------------- = 0.5 moles O₂
2 moles CO
To calculate the liters of oxygen, you need to use Avogadro's Law:
V₁ / N₁ = V₂ / N₂
In this equation, "V₁" and "N₁" represent the volume and moles of the first molecule. "V₂" and "N₂" represent the volume and moles of the second molecule. You can plug the given and calculated values into the equation and simplify to isolate V₂.
V₁ = 6.0 L V₂ = ? L
N₁ = 1.0 moles N₂ = 0.5 moles
V₁ / N₁ = V₂ / N₂ <----- Avogadro's Law
(6.0 L) / (1.0 moles) = V₂ / (0.5 moles) <----- Insert values
6.0 = V₂ / (0.5 moles) <----- Simplify left side
3.0 = V₂ <----- Multiply both sides by 0.5
**I am not 100% confident on this answer. Please let me know if it is incorrect**
An mL is also equivalent to cm³, signifying that 140 mL is equivalent to 140 cm³. The mass of ethanol is calculated by multiplying the density by the volume.
mass = (140 cm³)(0.789 g/cm³)
mass = 110.46 g
Then, calculate the number of moles of ethanol by dividing the mass by the molar mass of ethanol equal to 46.07 g/mol.
number of moles = (110.46 g/ 46.07 g/mol) = 2.4 mol
Then, multiply the number of moles by the Avogadro's number.
2.4 mol (6.022 x 10²³)
<em> number of molecules = 1.445 x 10²⁴</em>
Answer:
Work done in Joules = -14865.432J
ΔU = -262.94KJ
Explanation:
The steps are as shown in the attachment