First, we need to know what's the gravity value in the moon. it is 1.622 m/ s2
to find the force, let's recall this formula----> Force= mass x gravity
force= 83 kg x 1.622= 134.6
A is the closest choice.
Answer:

Explanation:
Given:
Pressure = 745 mm Hg
Also, P (mm Hg) = P (atm) / 760
Pressure = 745 / 760 = 0.9803 atm
Temperature = 19 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (19 + 273.15) K = 292.15 K
Volume = 0.200 L
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
0.9803 atm × 0.200 L = n × 0.0821 L.atm/K.mol × 292.15 K
⇒n = 0.008174 moles
From the reaction shown below:-

1 mole of
react with 2 moles of 
0.008174 mole of
react with 2*0.008174 moles of 
Moles of
= 0.016348 moles
Volume = 13.4 mL = 0.0134 L ( 1 mL = 0.001 L)
So,



Answer:
Explanation:
mole of NaOH present = molarity x volume
= 1.0 X 0.05 = 0.05 mole
<em>Recommended mole of HCl </em>= 1.1 x 0.05 = 0.055
<em>Mole of HCl carelessly added by Jacob </em>= 1.1 x 0.04 = 0.044
From the equation of reaction:
HCl + NaOH ----> NaCl + H2O
The ratio of mole of HCl to that of NaOH for a complete neutralization reaction is 1:1. However, the recommended mole of HCl (0.055 mole) is more than the mole of NaOH (0.05 mole). <u>Hence, the recommended endpoint of the reaction is supposed to be acidic.</u>
The mole of HCl added by Jacob (0.044) is short of the recommended amount (0.055) and also short of the amount required for a neutral endpoint (0.05). <u>This means that the endpoint will have an excess amount of NaOH and as such, basic instead of the desired acidic endpoint.</u>