64 players
Reason- 2/3 of 96 = (32 x 2 = 64) telling us how many got on the list
Answer:
200 → 400 → 800 → 1600 → 3200
Step-by-step explanation:
starting at 200 and multiplying by 2 until you have 5 numbers.
Answer:
-.125
Step-by-step explanation:
5/8 + 3/4 solve
2/3 - 5/6 solve
then subtract your numbers
Answer: A & C
<u>Step-by-step explanation:</u>
HL is Hypotenuse-Leg
A) the hypotenuse from ΔABC ≡ the hypotenuse from ΔFGH
a leg from ΔABC ≡ a leg from ΔFGH
Therefore HL Congruency Theorem can be used to prove ΔABC ≡ ΔFGH
B) a leg from ΔABC ≡ a leg from ΔFGH
the other leg from ΔABC ≡ the other leg from ΔFGH
Therefore LL (not HL) Congruency Theorem can be used.
C) the hypotenuse from ΔABC ≡ the hypotenuse from ΔFGH
at least one leg from ΔABC ≡ at least one leg from ΔFGH
Therefore HL Congruency Theorem can be used to prove ΔABC ≡ ΔFGH
D) an angle from ΔABC ≡ an angle from ΔFGH
the other angle from ΔABC ≡ the other angle from ΔFGH
AA cannot be used for congruence.
Answer:
0.30
Step-by-step explanation:
Probability of stopping at first signal = 0.36 ;
P(stop 1) = P(x) = 0.36
Probability of stopping at second signal = 0.54;
P(stop 2) = P(y) = 0.54
Probability of stopping at atleast one of the two signals:
P(x U y) = 0.6
Stopping at both signals :
P(xny) = p(x) + p(y) - p(xUy)
P(xny) = 0.36 + 0.54 - 0.6
P(xny) = 0.3
Stopping at x but not y
P(x n y') = P(x) - P(xny) = 0.36 - 0.3 = 0.06
Stopping at y but not x
P(y n x') = P(y) - P(xny) = 0.54 - 0.3 = 0.24
Probability of stopping at exactly 1 signal :
P(x n y') or P(y n x') = 0.06 + 0.24 = 0.30