Answer:
The farther star will appear 4 times fainter than the star that is near to the observer.
Explanation:
Since it is given that the luminosity of the 2 stars is same thus they radiate the same energy per unit time
Consider a spherical wave front of energy 'E' that leaves both the stars (Both radiate 'E' as they have same luminosity)
This Energy is spread over the whole surface area of sphere Thus when the wave front is at a distance 'r' the energy per unit surface area is given by
For the star that is twice away from the earth the distance is '2r' thus we will receive an energy given by
Hence we sense it as 4 times fainter than the nearer star.
Answer:
A) and B) are correct.
Explanation:
Let's take a look at the attached picture. Now
The total voltage across both capacitors is the same as the sum of the voltage from each device, that statement is true for any electrical device connected in series. So a) is TRUE
The equivalent capacitance is going to be:
And that value can be mathematically proven that is always less than any of the values of each capacitor. So b is TRUE
And through both capacitors flow the same current, but the amount of charge depends on the value of the capacitors, so only could be the same if the capacitors are the same value. Otherwise, don't. C) not always, so FALSE
Preserved fossil<span> (like a fossil in amber, ice or tar.</span>
Answer:
1.2 rad/s
Explanation:
m1 = 15 g, m2 = 9 g, ω1 = 0.75 rad/s
Let the new angular speed is ω2 and the radius of the table be r.
The angular momentum is conserved when no external torque is applied.
I1 ω1 = I2 ω2
(m1 + m2)x r^2 x 0.75 = m1 x r^2 x ω2
(15 + 9) x 0.75 = 15 x ω2
ω2 = 1.2 rad/s
Answer:
April 24, 1990 is the answer