Answer:
2.40 M
Explanation:
The molarity of a solution tells you how many moles of solute you get per liter of solution.
Notice that the problem provides you with the volume of the solution expressed in milliliters,
mL
. Right from the start, you should remember that you must convert this volume to liters by using the conversion factor
1 L
=
10
3
mL
Now, in order to get the number of moles of solute, you must use its molar mass. Now, molar masses are listed in grams per mol,
g mol
−
1
, which means that you're going to have to convert the mass of the sample from milligrams to grams
1 g
=
10
3
mg
Sodium chloride,
NaCl
, has a molar mass of
58.44 g mol
−
1
, which means that your sample will contain
unit conversion
280.0
mg
⋅
1
g
10
3
mg
⋅
molar mass
1 mole NaCl
58.44
g
=
0.004791 moles NaCl
This means that the molarity of the solution will be
c
=
n
solute
V
solution
c
=
0.004791 moles
2.00
⋅
10
−
3
L
=
2.40 M
The answer is rounded to three sig figs, the number of sig figs you have for the volume of the solution.
I won't give the answer, but here's the process: You have the weight of the object (0.500 lbs), and you want to convert that into the number of kernels. You are given the fact that 1 pound = 16 oz, and 1 oz=28.3 grams. So it should be apparent that you need to convert pounds to ounces first and then convert ounces to grams. Now that you the grams, you can easily figure out how many kernels there are because .125 grams equals the weight of one kernel.
Source: IGN
According to Boyle's Law, P1V1 = P2V2
where P1 and V1 are initial pressure and volume respectively. P2 and V2 are final pressure and volume receptively.
Given: P2 = 4 P1 and V1 = 10.0l
∴ V2 = 2.5 l
Answer: Final volume of system is 2.5 l
C. Composition
is the answer
Answer: This would be considered concentrated because if you're upping the recipe on your own accord, it would be way more sour, causing the lemonade to be more concentrated. It would be diluted if you added less than 2 lemons.