A) - heat makes particles move faster, which usually makes the substance as a whole expand, but if the gas cannot expand the pressure will increase instead
The first step is to balance the equation:
<span>C3H8 + 5O2 ---> 3CO2 + 4H2O
Check the balance
element left side right side
C 3 3
H 8 4*2 = 8
O 5*2=10 3*2 + 4 = 10
Then you have the molar ratios:
3 mol C3H8 : 5 mol O2 : 3 mol CO2 : 4 mol H2O
Now you have 40 moles of O2 so you make the proportion:
40.0 mol O2 * [3 mol CO2 / 5 mol O2] = 24.0 mol CO2.
Answer: option D. 24.0 mol CO2
</span>
Answer:
The decreasing order of bond length in the carbon - carbon bonds will be:

Explanation:
Bond length is defined as average distance between two nuclei of bonded atoms in a molecule.Bond length is inversely proportional to the number of bonds present between two atoms.
...[1]
Bond energy is defied as amount of energy required to break apart the bond of 1 mole of molecule into their individual atom. Bond energy is directly proportional to the number of bonds present between two atoms.
..[2]
From [1] and [2]:

hybridized
hybridized
hybridized
Extent of overlapping of orbitals in these hybridization;

Higher the overlapping of orbital more closer will be both atoms to each other and shorter will be the bond lenght.
So, the decreasing order of bond length in the carbon - carbon bonds will be:

Answer:
Moles of NaCl formed is 6.0 moles
Explanation:
We are given the equation;
2 Na(s) + Cl₂(g) → 2 NaCl(s)
- Moles of Na is 6.0 moles
- Moles of Cl₂ is 4.0 moles
From the reaction;
2 moles of sodium reacts with 1 mole of chlorine gas to form 2 moles of NaCl
In this case;
6 moles of Na would require 3 moles of Cl₂, this means that chlorine gas is in excess.
Thus, the rate limiting reagent is sodium.
But, 2 moles of sodium reacts to form 2 moles of NaCl
Therefore;
Moles of NaCl = Moles of Na
= 6.0 moles
Thus, moles of sodium chloride produced is 6.0 moles