Answer:
2Mg + O₂ ⟶ 2MgO
Explanation:
Step 1. Start with the most complicated-looking formula (O₂?).
Put a 1 in front of it.
Mg + 1O₂ ⟶ MgO
Step 2. Balance O.
We have fixed 2 O on the left. We need 2O on the right. Put a 2 in front of MgO.
Mg + 1O₂ ⟶ 2MgO
Step 3. Balance Mg.
We have fixed 2 Mg on the right-hand side. We need 2 Mg atoms on the left. Put a 2 in front of Mg.
2Mg + 1O₂ ⟶ 2MgO
Every formula now has a coefficient. The equation should be balanced. Let’s check.
<u>Atom</u> <u>On the left</u> <u>On the righ</u>t
Mg 2 2
O 2 2
All atoms are balanced.
The balanced equation is
2Mg + O₂ ⟶ 2MgO
THE MOLAR MASS OF FLUORINE IS 35G/MOL
Hey there!:
a) Cations which are lowest size generally forms adopts more number of water molecules around it. Such kind of Cations forms largest hydrated ions. Among given cations, Li+ is smallest one and (C4H9)4N+ is largest one. So, Li+ ion forms largest hydrated ion.
b) Organic ligands or alkyl chains contained Cations are hydrophobic in nature due to its low polar nature. Among given (C₄H₉)4N⁺ cation is hydrophobic in nature.
c) Size of cation inversely proportional to the hydrated sphere or number of water molecules attached. So, in the given Cations (C₄H₉)4N⁺ is largest cation which attaches fewest water molecules.
d) Charge on the cation makes it more electrostatic maker. But size is inversily proportional to electrostatic property. (C₄H₉)4N⁺ is electrostatic structure breaker.
e) Al⁺³ has highest charge. So it is most electrostatic structure maker.
Hope this helps!
Stoichiometry measures these quantitative relationships, and is used to determine the amount of products/reactants that are produced/needed in a given reaction.
Answer:
To the best of my knowledge, it is because of the amount of gamma rays is given off.
Explanation:
While both are isotopes, Potassium 40 gives off fewer gamma rays compared to Cobalt 60. Potassium 40 isn't really harmful to humans, but Cobalt 60 (I believe) is used in chemotherapy.