The minimum height of the dive needed to achieve the given speed is v = 69 m/s is 242.9 m.
Given information:
The mass of peregrine falcon is, m = 480
The final speed reached by the peregrine falcon in a vertical dive is, v = 69 m/s
It is given that the falcon is diving vertically downward. It can be compared with the same situation as the free-falling object under the effect of gravity only. So, the initial velocity of the falcon will be u = 0 m/s as the motion starts with rest.
The value of the gravitational acceleration of gravity is, g = 9.80 m/s²
Now, using the third equation of motion, the minimum height required for the final speed will be,
v² - u² = 2gh
69² - 0² = 2 × 9.8 × h
h = 242.9m.
Therefore, the minimum height of the dive needed to achieve the given speed is 242.9 m.
Learn more about falcon speeds at
brainly.com/question/12449855
#SPJ4
Answer:
The highest electric field is experienced by a 2 C charge acted on by a 6 N electric force. Its magnitude is 3 N.
Explanation:
The formula for electric field is given as:
E = F/q
where,
E = Electric field
F = Electric Force
q = Charge Experiencing Force
Now, we apply this formula to all the cases given in question.
A) <u>A 2C charge acted on by a 4 N electric force</u>
F = 4 N
q = 2 C
Therefore,
E = 4 N/2 C = 2 N/C
B) <u>A 3 C charge acted on by a 5 N electric force</u>
F = 5 N
q = 3 C
Therefore,
E = 5 N/3 C = 1.67 N/C
C) <u>A 4 C charge acted on by a 6 N electric force</u>
F = 6 N
q = 4 C
Therefore,
E = 6 N/4 C = 1.5 N/C
D) <u>A 2 C charge acted on by a 6 N electric force</u>
F = 6 N
q = 2 C
Therefore,
E = 6 N/2 C = 3 N/C
E) <u>A 3 C charge acted on by a 3 N electric force</u>
F = 3 N
q = 3 C
Therefore,
E = 3 N/3 C = 1 N/C
F) <u>A 4 C charge acted on by a 2 N electric force</u>
F = 2 N
q = 4 C
Therefore,
E = 2 N/4 C = 0.5 N/C
The highest field is 3 N, which is found in part D.
<u>A 2 C charge acted on by a 6 N electric force</u>
Answer:
Momentum is the product of a moving object's mass and velocity . ... When two objects collide the total momentum before the collision is equal to the total momentum after the collision (in the absence of external forces). This is the law of conservation of momentum. It is true for all collisions.
Explanation:
Answer:
(a). The ball's centripetal acceleration is 
(b). The magnitude of the net force is 232.9 N.
Explanation:
Given that,
Mass of baseball = 144 g
Speed = 81 mph = 36.2 m/s
Distance = 81 cm
(a). We need top calculate the ball's centripetal acceleration just before it is released
Using formula of centripetal acceleration

Where, v = speed
r = radius
Put the value into the formula



(b). We need to calculate the magnitude of the net force that is acting on the ball just before it is released
Using formula of force

Put the value into the formula


Hence, (a). The ball's centripetal acceleration is 
(b). The magnitude of the net force is 232.9 N.
The right answer for the question that is being asked and shown above is that: "A. Machines increase the amount of force required to do a task. " The statement that is true about machines is that <span>A. Machines increase the amount of force required to do a task. </span>