Answer:
4.62 M
Explanation:
Molarity = moles/volumes (L), so you need to find the moles and the volumes in liters.
Finding the volume is easy because you just have to convert mL to L, so the volume is 0.45 L
Next, find the moles. You can do this by using the molar mass of aluminum to convert the grams to moles. The molar mass of aluminum is 26.98 g/mol.
56 g * (1 mol/26.98 g) = 2.08 mol
Now, divide the moles (2.08) by the volume (.45 L)
Molarity = 4.62 M
<h2><em><u>ᎪꪀsωꫀᏒ</u></em></h2>
➪Methane (CH4) is oxidized with molecu- lar oxygen (O2) to carbon dioxide (CO2).
Answer:
[HI] = 0.7126 M
Explanation:
Step 1: Data given
Kc = 54.3
Temperature = 703 K
Initial concentration of H2 and I2 = 0.453 M
Step 2: the balanced equation
H2 + I2 ⇆ 2HI
Step 3: The initial concentration
[H2] = 0.453 M
[I2] = 0.453 M
[HI] = 0 M
Step 4: The concentration at equilibrium
[H2] = 0.453 - X
[I2] = 0.453 - X
[HI] = 2X
Step 5: Calculate Kc
Kc = [Hi]² / [H2][I2]
54.3 = 4x² / (0.453 - X(0.453-X)
X = 0.3563
[H2] = 0.453 - 0.3563 = 0.0967 M
[I2] = 0.453 - 0.3563 = 0.0967 M
[HI] = 2X = 2*0.3563 = 0.7126 M