The volume of the rectangular prism is
Where:
B is the base area
H is the height
Since the base area is 160 feet^2
Since the volume is 1360 feet^3
Substitute them in the rule above
Divide both sides by 160 to find H
The height of the container is 8.5 feet
Answer:
see explanation
Step-by-step explanation:
To determine which ordered pairs are solutions to the equation
Substitute the x and y values into the left side of the equation and if equal to the right side then they are a solution.
(- 1, - 6)
3(- 1) - 4(- 6) = - 3 + 24 = 21 = right side ← thus a solution
(- 3, 3)
3(- 3) - 4(3) = - 9 - 12 = - 21 ≠ 21 ← not a solution
(11, 3)
3(11) - 4(3) = 33 - 12 = 21 = right side ← thus a solution
(7, 0)
3(7) - 4(0) = 21 - 0 = 21 = right side ← thus a solution
The ordered pairs (- 1, - 6), (11, 3), (7, 0) are solutions to the equation
Answer:
y = 3sin2t/2 - 3cos2t/4t + C/t
Step-by-step explanation:
The differential equation y' + 1/t y = 3 cos(2t) is a first order differential equation in the form y'+p(t)y = q(t) with integrating factor I = e^∫p(t)dt
Comparing the standard form with the given differential equation.
p(t) = 1/t and q(t) = 3cos(2t)
I = e^∫1/tdt
I = e^ln(t)
I = t
The general solution for first a first order DE is expressed as;
y×I = ∫q(t)Idt + C where I is the integrating factor and C is the constant of integration.
yt = ∫t(3cos2t)dt
yt = 3∫t(cos2t)dt ...... 1
Integrating ∫t(cos2t)dt using integration by part.
Let u = t, dv = cos2tdt
du/dt = 1; du = dt
v = ∫(cos2t)dt
v = sin2t/2
∫t(cos2t)dt = t(sin2t/2) + ∫(sin2t)/2dt
= tsin2t/2 - cos2t/4 ..... 2
Substituting equation 2 into 1
yt = 3(tsin2t/2 - cos2t/4) + C
Divide through by t
y = 3sin2t/2 - 3cos2t/4t + C/t
Hence the general solution to the ODE is y = 3sin2t/2 - 3cos2t/4t + C/t
The 4 Pack is the better value ;)