Answer is in a pho
to. I can only uplo
ad it to a file host
ing service. link below!
bit.
ly/3a8Nt8n
Answer:
6,8 g
Explanation:
c = 4.18 J/(g * °C) = 4180 J / (kg * °C)
= 25 °C
= 36,4 °C
Q = 325 J
The formula is: Q = c * m * (
)
m =
Calculating:
m = 325 / 4180 * (36,4 - 25) ≈ 0,0068 kg = 6,8 g
Answer:
0.02 moles.
Explanation:
volume of H₂ gas at R.T.P = 480 cm³
Where
R.T.P = room temperature and pressure
molar volume of gas at = 24000 cm³
no. of moles of hydrogen = ?
Solution:
formula Used
no. of moles = volume of gas / molar volume
put values in above equation
no. of moles = 480 cm³ / 24000 cm³/mol
no. of moles = 0.02 mol
So,
no. of moles of hydrogen in 480 cm³ is 0.02 moles.
Well when a particle of air is becomes heated it rises, right? So you could write some like you started off close to the earth (aka the troposphere) until you became heated then you started to rise and as you reached higher elevations you cooled down and you were recycled into cool air and you moved back down and became new fresh cool air until the next time you'll become heated and rise again to be recycled into fresh cool new air.
There are two naturally occurring isotopes of gallium: mass of Ga-69 isotope is 68.9256 amu and its percentage abundance is 60.11%, let the mass of other isotope that is Ga-71 be X, the percentage abundance can be calculated as:
%Ga-71=100-60.11=39.89%
Atomic mass of an element is calculated by taking sum of atomic masses of its isotopes multiplied by their percentage abundance.
Thus, in this case:
Atomic mass= m(Ga-69)×%(Ga-69)+X×%(Ga-71)
From the periodic table, atomic mass of Ga is 69.723 amu.
Putting the values,

Thus,

Rearranging,

Therefore, mass of Ga-71 isotope is 70.9246 amu.