1) • Solubility is the ability of a substance to be dissolved especially in water
• Unit; mg/L (milligrams per liter)
2) A saturated solution is a chemical solution containing the maximum concentration of a solute dissolved in the solvent.
3) To detoxify any acid that was previously used in it
4) CAN’T SEE THE MAIN QUESTIONS
5) CAN’T SEE THE MAIN QUESTIONS
Answer:
1.15 M
Explanation:
Step 1: Given data
- Initial volume (V₁): 0.125 L
- Initial concentration (C₁): 3.00 M
- Final volume (V₂): 0.325 L
- Final concentration (C₂): ?
Step 2: Calculate the final concentration of the solution
We want to prepare a dilute solution from a concentrated one by adding water. We can calculate the concentration of the dilute solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
C₂ = C₁ × V₁/V₂
C₂ = 3.00 M × 0.125 L/0.325 L = 1.15 M
True. The prototype is usually the "rough draft" the figure out what needs fixed or upgraded before they make the final product "final draft". Hope that helped!
The symbol for xenon (xe) would be a part of the noble gas notation for the element cesium.
For writing the electronic configuration of any element by using the preceding noble gas configuration, we simply use the symbols of noble gas belongs to the previous period of that particular elements. We can't use the symbol of noble gas of same period from which the element belong.
A is the wrong option because the noble gas in the preceding period to the period from which antimony belongs is krypton.
The actual electronic configuration of antimony is as follow:
[Kr] 4d10 5s2 5p3
B is correct option because the noble gas in the preceding period to the period from which Cesium belongs is Xenon.
The actual electronic configuration of Cesium is as follow:
[Xe] 6s1
Thus, we concluded that the symbol for xenon (xe) would be a part of the noble gas notation for the element cesium.
learn more about Noble gas:
brainly.com/question/2094768
#SPJ4
Answer/Explanation:
Wood: E
Freshly brewed black coffee: O
Water: O
Lucky Charms: E
Salt: O
Dirt: E
Sausage and mushroom pizza: E
Air: O
Milk: O
Gold: O
Any mixture that looks the same through the substance is homogenous. The different parts are unable to be visibly seen. (Any periodic element is homogenous)
Any mixture that can be easily determined a mix and cannot be evenly separated or dispersed is heterogenous.