In physics, net force<span> is the overall </span>force<span> acting on an object. In order to calculate the </span>net force<span>, the body is isolated and interactions with the environment or other constraints are represented as </span>forces<span> and torques in a free-body diagram.
</span>
<em>Answer:</em>
<em>Ether:</em>
Ether are organic compounds that contain ether functional group , in which oxygen atom is connected with two alkyl or aryl group.
They have general formula as follow
- R---O---R or R'---O----R or R'---O---R'
while R = Alkyl
R' = Aryl
Answer:
V₂ = 2509.62 cm³
Explanation:
Given data:
Initial volume = 1500 cm³
Initial temperature = -65°C (-65 + 273 = 208 K)
Final temperature = 75°C ( 75 +273 = 348 K)
Final volume = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 1500 cm³ × 348 K / 208 k
V₂ = 522000 cm³.K / 208 k
V₂ = 2509.62 cm³
The rate constant is mathematically given as
K2=2.67sec^{-1}
<h3>What is the Arrhenius equation?</h3>
The rate constant for a particular reaction may be calculated with the use of the Arrhenius equation. This constant can be stated in terms of two distinct temperatures, T1 and T2, as follows:

Therefore
KT1= 0.0110^{-1}
T1= 21+273.15
T1= 294.15K
T2= 200
T2=200+273.15
T2= 473.15K
Ea= 35.5 Kj/Mol
Hence, in j/mol R Ea is
Ea=35.5*1000 j/mol R

K2/0.0110 =e^(5.492)
K2/0.0110 =242.74
K2= 242.74*0.0110
K2=2.67sec^{-1}
In conclusion, rate constant
K2=2.67sec^{-1}
Read more about rate constant
brainly.com/question/20305871
#SPJ1
Answer: O2+6H12O6=CO2+ENERGY(ATP)
I DON'T THINK SHE IS CORRECT
Explanation: