=)
Explanation:
Nonpolar compounds do not dissolve in water. The attractive forces that operate between the particles in a nonpolar compound are weak dispersion forces. However, the nonpolar molecules are more attracted to themselves than they are to the polar water molecules.
Answer:
c. The atoms of one element can be identical to the atoms of another element.
Explanation:
<em>Which of the following is not a statement of Dalton's atomic theory of matter?</em>
<em>a. Elements are made of atoms.</em> TRUE. An atom is the smallest particle of a chemical element that can exist.
<em>b. Atoms of a given element are identical.</em> TRUE. The only slight difference is in the mass of isotopes.
<em>c. The atoms of one element can be identical to the atoms of another element.</em> FALSE. The atoms of different elements are different from one to another.
<em>d. A given compound always has the same number and kinds of atoms. </em>TRUE. This is known as Dalton's law of constant composition.
Answer:
By designing new technology that would prove new information
Explanation:
Answer:
A
Explanation:
What the equation is tell you is that for every 3 mols of NO2 you get 2 mol of HNO3
3 mol NO2 / 2 mol HNO2 ===> 300.00 mol NO2 / x Cross multiply
3x = 2 * 300
3x = 600 Divide by 3
3x/3 = 600/3 Do the division
x = 200.00
Answer:
There are 2 hydrogen atoms, one magnesium atom, and 5 atoms in total.
Explanation:
We are given a compound in formula form. To make things easier to understand, we can first convert this to the name of the compound.
- When a compound contains one or more elements in parentheses, these are usually a <u>polyatomic ion</u>.
- Polyatomic ions are ions made up of two or more elements with a positive or negative charge over the entire ion. Commons examples of these NH₄⁺ (ammonia) and HCO₃⁻ (bicarbonate).
- You can combine metals with polyatomic ions to create commonly known compounds, such as baking soda. The chemical name for baking soda is sodium bicarbonate, so we can combine Na (sodium) with HCO₃⁻ (bicarbonate) and create sodium bicarbonate: NaHCO₃.
This compound is one magnesium atom bonded to two hydroxide ions.
- Hydroxide is the compound between one hydrogen atom and one oxygen atom. The compound overall adopts a negative charge of 1.
- If we have one hydrogen atom and one oxygen atom, the most electronegative atom is written first in chemical formulas. Therefore, the symbol for Oxygen (O) goes first.
- Then, write in the hydrogen atom directly after the O symbol: OH.
- Finally, since we have a negative charge on the ion, we need to play a negative sign as a superscript for the compound. Therefore, this becomes OH⁻.
Now, we need to determine the charge on the Magnesium atom which is determined from the amount of valence electrons the atom has.
- On a periodic table, the symbol for Magnesium is Mg and this element has 2 valence electrons.
- In order to fulfill the Octet Rule, the It is more likely to give up 2 electrons to a nonmetal than it is to gain 6, so we can safely assume that the charge is ²⁺.
- We need to use the criss-cross technique to transfer the charges between the element and the ion, so the negative 1 charge goes to the Mg, which does not appear (negative 1 or positive 1 are implied) and since the magnesium has a charge of positive 2, this is the subscript for the hydroxide ion.
- Therefore, our compound becomes Mg(OH)₂, and we have labeled this as magnesium hydroxide.
Now, to the number of atoms:
- The new charge on Mg is 1-, so there is only one atom of Mg.
- The charge is 2+ on the OH ion, so there are two atoms of H and two atoms of O.
- Two atoms of oxygen, two atoms of hydrogen, and one atom of magnesium add up to be five atoms in total.