Gamma rays have the highest energies and the shortest wavelengths.
Initial speed of the car (u) = 15 m/s
Final speed of the car (v) = 0 m/s (Car comes to a complete stop after driver applies the brake)
Distance travelled by the car before it comes to halt (s) = 63 m
By using equation of motion, we get:

Acceleration of the car (a) = -1.78 m/s²
Magnitude of the car's acceleration (|a|) = 1.78 m/s²
1) By looking at the table of the visible spectrum, we see that blue light has a wavelength in the range [450-490 nm], while red light has wavelength in the range [620-750 nm]. Therefore, red light has longer wavelength than blue light.
2) The frequency f of an electromagnetic wave is related to its wavelength

by the formula

where c is the speed of light. We see that the frequency is inversely proportional to the wavelength, so the shorter the wavelength, the greater the frequency. In this case, blue light has shorter wavelength than red light, so blue light has greater frequency than red light.
3) The energy of the photons of an electromagnetic wave is given by

where h is the Planck constant and f is the frequency. We see that the energy is directly proportional to the frequency, so the greater the frequency, the greater the energy. In this problem, blue light has greater frequency than red light, so blue light has also greater energy than red light.
Answer:
it's the second one;
if the frequency increases, wavelength decreases
Explanation:
we know, v=f×lamda(wave length)
so for constant velocity Frequency f is inversely proportional to lamda
i.e.
fα 1/lamda
so as the f increases lamda decreases and vise versa