Answer:
(a) the compression of the spring when the block comes to rest is 4cm
(b) speed of the block is 0.427 m/s
Explanation:
Given;
mass of the block, m = 1.6 kg
spring constant, k = 902 N/m
initial speed of the block, v₀ = 0.95 m/s
(a) the compression of the spring when the block comes to rest
when the block comes to rest, the final speed, vf = 0
Apply the law of conservation of energy;
¹/₂kx² = ¹/₂mv₀²
kx² = mv₀²
![x = \sqrt{\frac{mv_0^2}{k} } \\\\x = \sqrt{\frac{1.6(0.95)^2}{902} }\\\\x = 0.040 \ m](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%7B%5Cfrac%7Bmv_0%5E2%7D%7Bk%7D%20%7D%20%5C%5C%5C%5Cx%20%3D%20%20%5Csqrt%7B%5Cfrac%7B1.6%280.95%29%5E2%7D%7B902%7D%20%7D%5C%5C%5C%5Cx%20%3D%200.040%20%5C%20m)
x = 4 cm
(b) speed of the block
Apply the law of conservation of energy;
¹/₂mv² = ¹/₂kx²
mv² = kx²
![v = \sqrt{\frac{kx^2}{m}}\\\\v = \sqrt{\frac{(902)(0.018)^2}{1.6}}\\\\v = 0.427 \ m/s](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%7B%5Cfrac%7Bkx%5E2%7D%7Bm%7D%7D%5C%5C%5C%5Cv%20%3D%20%20%20%5Csqrt%7B%5Cfrac%7B%28902%29%280.018%29%5E2%7D%7B1.6%7D%7D%5C%5C%5C%5Cv%20%3D%200.427%20%5C%20m%2Fs)