Answer:
I have attached pictures below. Maybe those will help?
Explanation:
<u>Answer:</u> The energy of photon is 
<u>Explanation:</u>
The relation between energy and wavelength of light is given by Planck's equation, which is:

where,
E = energy of the light = ?
h = Planck's constant = 
c = speed of light = 
= wavelength of photon = 0.122 m
Putting values in above equation, we get:

Hence, the energy of photon is 
<span>The molecule contains one atom of copper and one atom of iodine. They are connected by an ionic bond because the copper takes a positive charge and the iodine has a negative charge before they are bonded. These opposing charges are negated when the two elements come together.</span>
Answer:The first task of a nuclear weapon design is to rapidly assemble a supercritical mass of fissile uranium or plutonium. A supercritical mass is one in which the percentage of fission-produced neutrons captured by another fissile nucleus is large enough that each fission event, on average, causes more than one additional fission event. Once the critical mass is assembled, at maximum density, a burst of neutrons is supplied to start as many chain reactions as possible. Early weapons used a modulated neutron generator codenamed "Urchin" inside the pit containing polonium-210 and beryllium separated by a thin barrier. Implosion of the pit crushed the neutron generator, mixing the two metals, thereby allowing alpha particles from the polonium to interact with beryllium to produce free neutrons. In modern weapons, the neutron generator is a high-voltage vacuum tube containing a particle accelerator which bombards a deuterium/tritium-metal hydride target with deuterium and tritium ions. The resulting small-scale fusion produces neutrons at a protected location outside the physics package, from which they penetrate the pit. This method allows better control of the timing of chain reaction initiation.
Explanation: