I'm not sure, but maybe burning point...
<u><em>Answer:</em></u>



<u><em>Explanation:</em></u>
<u>Part 1: Solving for m</u>
<u>We are given that:</u>
E = mc²
To solve for m, we will need to isolate the m on one side of the equation
This means that we will simply divide both sides by c²

<u>Part 2: Solving for c</u>
<u>We are given that:</u>
E = mc²
To solve for c, we will need to isolate the m on one side of the equation
This means that first we will divide both sides by m and then take square root for both sides to get the value of c

<u>Part 3: Solving for E</u>
<u>We are given that:</u>
m = 80 and c = 0.4
<u>To get the value of E, we will simply substitute in the given equation: </u>
E = mc²
E = (80) × (0.4)²
E = 12.8 J
Hope this helps :)
A human body, just like a dog's, will sweat. Dogs will pants and sweat through the pads of their feet to cool down, and human will sweat through their foreheads, armpits, etc.
Dogs will tend to, in hot environments, lay on the floor or where the surface is cooler. Since they cannot simply strip their clothing to keep cool they tend to find cool surfaces, fans, sources of air, etc. to keep cool from the heat.
Oxidation happens at the anode and reduction happens at the cathode.<span />
The balanced dissociation equation for Cs₂CO₃ is:
Cs₂CO₃(aq) —> Cs⁺(aq) + CO₃²¯(aq)
A dissociation equation is an equation showing the available ions present in a solution.
To obtain the dissociation equation, the compound must be dissolved in water to produce an aqueous solution.
The dissociation equation for Cs₂CO₃ can be written as follow
Cs₂CO₃(aq) —> Cs⁺(aq) + CO₃²¯(aq)
Learn more about dissociation equation: brainly.com/question/1903354