Answer:
High concentration
Higher charge on the ions
Explanation:
Ideally, the Van't Hoff factor is defined as the ratio between the actual concentration of particles produced when the substance is dissolved in a solution and the concentration of a substance as calculated from its mass(Wikipedia).
The Van't Hoff factor is influenced by the concentration of ions in solution as well as the magnitude of charge on the ions in solution.
Highly charged ions tend to remain paired in solution thereby leading to a lower value of Van't Hoff factor. Also, in highly concentrated solutions, the Van't Hoff factor is lower than in dilute solutions due to the pairing of ions
Answer:
13=C
14=D
Explanation:
I cant explane the right formula but my answer is correct
NH4 itself is called ammonium ion with positive charge of 1+. hence the oxidation state will be +1
OH itself is called hydroxide ion with negative charge of 1-. hence the oxidation state will be -1
there's actually no such compound as stated in your chemical formula. although it's simply called ammonium hydroxide by looking at the chemical formula, in fact the compound should rightly be called as aqueous ammonia with chemical formula of NH3 (aq). this is because the ammonia molecule will ionise due to the presence of water molecule to be protonated, hence forming ammonium ion and hydroxide ion in the solution.
Answer:
The complete question is:
Question: What disorder is indicated by these findings? A client comes to the emergency department with status asthmaticus. His respiratory rate is 48 breaths/minute, and he is wheezing. An arterial blood gas analysis reveals a pH of 7.52, a partial pressure of arterial carbon dioxide (PaCO2) of 30 mm Hg, PaO2 of 70 mm Hg, and bicarbonate (HCO3−) of 26 mEq/L.
A. Metabolic acidosis
B. Respiratory acidosis
C. Metabolic alkalosis
D. Respiratory alkalosis
Answer: The correct answer is:
D. Respiratory alkalosis
Explanation:
In Respiratory alkalosis the Partial Pressure of Arterial Carbondioxide (PaCO2) become decreased (i.e. less than 35 mm Hg) and the pH of blood become increased (i.e. more than 7.45). Alveolar hyperventilation causes respiratory alkalosis.
Alveolar hyperventilation occurs when alveolar ventilation is increased than the arterial carbondioxide tension and carbondioxide production.
Alveolar ventilation is the gaseous exchange between alveoli and the external environment.
Whereas, in metabolic acidosis, bicarbonate (HCO3) become decreased (i.e. less than 22 mEq/l and the pH of blood become decreased (i.e. less than 7.35); in respiratory acidosis, the pH of blood also become decreased (i.e. less than 7.35) and the PaCO2 become increased (i.e. more than 45 mm Hg); and in metabolic alkalosis, the bicarbonate (HCO3) become increased (i.e. more than 26 mEq/l and the pH become increased (i.e. more than 7.45).