Answer:
4.43 g Cl₂
Explanation:
To find the mass of Cl₂, you need to (1) convert moles HCl to moles Cl₂ (via the mole-to-mole ratio from equation coefficients) and then (2) convert moles Cl₂ to grams (via the molar mass). It is important to arrange the conversions/ratios in a way that allows for the cancellation of units. The final answer should have 3 significant figures like the given value.
4 HCl(g) + O₂(g) -----> 2 Cl₂(g) + 2 H₂O(g)
^ ^
Molar Mass (Cl₂): 2(35.453 g/mol)
Molar Mass (Cl₂): 70.906 g/mol
0.125 moles HCl 2 moles Cl₂ 70.906 g
-------------------------- x ---------------------- x ------------------- = 4.43 g Cl₂
4 moles HCl 1 mole
Answer:
<h3>The answer is 1.30288 × 10³ g</h3>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume = 95.8mL
density = 13.6g/mL
We have
mass = 13.6 × 95.8 = 1302.88
We have the final answer as
<h3>1.30288 × 10³ g</h3>
Hope this helps you
Answer: It depends on the type of chemical reaction that formed the compound.
Explanation:
Exothermic reactions give off the heat to the reaction environment, so the compound feels hotter.
Endothermic reactions absorb the heat from the reaction environment and the compound feels cooler.
The relative volumes of chloroform and water that should be used is 9:10
Concentration of solution in chloroform =
( moles of chloroform )
Concentration of solution in water =
( moles of water )
Dissociation constant at
; 
Concentration of solution in chloroform / Concentration of solution in water
Meaning;

Since
mole is present in chloroform and
mole is present in water, Total mole of Caffeine present is 
Now, we substitute our given values into the equation

Therefore, the relative volumes of chloroform and water that should be used is 9:10
Learn more; brainly.com/question/11060225
Metals on the left side, metalloids on the staircase, nonmetals on right side