(a) The stone travels a vertical distance <em>y</em> of
<em>y</em> = (12.0 m/s) <em>t</em> + 1/2 <em>g t</em> ²
where <em>g</em> = 9.80 m/s² is the acceleration due to gravity. Note that this equation assume the downward direction to be positive, and that <em>y</em> = 0 corresponds to the height from which the stone is thrown.
So if it reaches the ground in <em>t</em> = 1.54 s, then the height of the building <em>y</em> is
<em>y</em> = (12.0 m/s) (1.54 s) + 1/2 (9.80 m/s²) (1.54 s)² ≈ 30.1 m
(b) The stone's (downward) velocity <em>v</em> at time <em>t </em>is
<em>v</em> = 12.0 m/s + <em>g t</em>
so that after <em>t</em> = 1.54 s, its velocity is
<em>v</em> = 12.0 m/s + (9.80 m/s²) (1.54 s) ≈ 27.1 m/s
(and of course, speed is the magnitude of velocity)
Answer:
The kinetic energy of the phone would increase. The gravitational potential energy of the phone would decrease.
Explanation:
The kinetic energy
of an object is proportional to the square of the speed of that object. If air resistance is negligible, the phone would accelerate under gravitational pull and speed up. Hence, the kinetic energy of the phone would increase.
The gravitational field near the surface of the earth is approximately constant. Hence, the gravitational potential energy
of the phone would be proportional to its height. As the phone approaches the ground, the height of the phone becomes lower and the gravitational potential energy of the phone would decrease.
Answer:
20 J
Explanation:
Given:
Weight of the book is, 
Height or displacement of the book is, 
The work done on the book to raise it to a height of 2 m on a shelf is against gravity. The gravitational force acting on the book is equal to its weight. Now, in order to raise it, an equal amount of force must be applied in the opposite direction.
So, the force applied by me should be equal to weight of the body and in the upward direction. The displacement is also in the upward direction.
Now, work done by the applied force is equal to the product of force applied and displacement of book in the direction of the applied force.
Therefore, work done is given as:

Therefore, the work done to raise a book to a height 2 m from the floor is 20 J.
Answer:
Explanation:
Magnetic field = permeability x turn density x current
Magnetic field = 0.22T
turn density = 4150 /1.6 = 2593.75 t/m
permeability : µ = k µ°
µ°= 4 π 10^-7
k = 1
I = 0.22 / 4 π 10^-7 * 2593.75 = 0.22 10^7 /32594 = 67.497 A
One of the equations of gravity is this:

Where v = final velocity which is 7m/s
u = initial velocity which is 0 for objects falling from a height
g = acceleration due to gravity and it is approximately 10m/s^2. It's a constant so pretty much remember this number. It's positive since the work being done is caused by gravity (in other words, it's falling down). It can also be negative if the work being down is against gravity (in other words, it's going up)
h = height of object
Substitute for the values and you should have something like this


