Answer:
d = 68.5 x 10⁻⁶ m = 68.5 μm
Explanation:
The complete question is as follows:
An optical engineer needs to ensure that the bright fringes from a double-slit are 15.7 mm apart on a detector that is 1.70m from the slits. If the slits are illuminated with coherent light of wavelength 633 nm, how far apart should the slits be?
The answer can be given by using the formula derived from Young's Double Slit Experiment:

where,
d = slit separation = ?
λ = wavelength = 633 nm = 6.33 x 10⁻⁷ m
L = distance from screen (detector) = 1.7 m
y = distance between bright fringes = 15.7 mm = 0.0157 m
Therefore,

<u>d = 68.5 x 10⁻⁶ m = 68.5 μm</u>
Answer:
Explanation:
Velocity of plane relative to ground V_pg = ?
Given the velocity in vector form ,
velocity of plane relative to air V_pw = 120 cos30 i + 120sin30j
V_wg = 60 i
V_pg = V_pw +V_wg
= 120 cos30 i + 120sin30j + 60i
= 164 i + 60 j
magnitude
=251 km / h
=
2m/s because the hockey puck is traveling at a constant speed ( acceleration is 0 ). Unless something acts on the hockey puck it will travel 2 m/s forever.
Answer:
The object starts away from the origin and then moves toward the origin at a constant velocity. Next, it stops for one second. Finally, it moves away from the origin at a greater constant velocity.