A gas made up of atoms escapes through a pinhole 0.225times as fast as gas. Write the chemical formula of the gas.
Answer:
Explanation:
To solve this problem, we must apply Graham's law of diffusion. This law states that "the rate of diffusion or effusion of a gas is inversely proportional to the square root of its molecular mass at constant temperature and pressure".
Mathematically;

r₁ is the rate of diffusion of gas 1
r₂ is the rate of diffusion of gas 2
m₁ is the molar mass of gas 1
m₂ is the molar mass of gas 2
let gas 2 be the given H₂;
molar mass of H₂ = 2 x 1 = 2gmol⁻¹
rate of diffusion is 0.225;
i .e r1/r2 = 0.225
0.225 = √2 / √ m₁
0.225 = 1.414 / √ m₁
√ m₁ = 6.3
m₁ = 6.3² = 39.5g/mol
The gas is likely Argon since argon has similar molecular mass
Number of O atoms : 24
<h3>Further explanation</h3>
Given
C₆H₁₂O₆ compound
Required
Number of atoms
Solution
A molecular formula shows the number of atomic elements in compound.
The empirical formula is the smallest comparison of the atoms
Glucose-C₆H₁₂O₆ is composed of 3 elements, namely C, H, and O.
The number of atoms in a compound can usually be seen from the subscript number after the atom and the reaction coefficient shows the number of molecules
So number of O atoms :
= 4 x 6 = 24 atoms
Answer:
pH =3.8
Explanation:
Lets call the monoprotic weak acid HA, the dissociation equilibria in water will be:
HA + H₂O ⇄ H₃O⁺ + A⁻ with Ka = [ H₃O⁺] x [A⁻]/ [HA]
The pH is the negative log of the H₃O⁺ concentration, we know the equilibrium constant, Ka and the original acid concentration. So we will need to find the [H₃O⁺] to solve this question.
In order to do that lets set up the ICE table helper which accounts for the species at equilibrium:
HA H₃O⁺ A⁻
Initial, M 0.40 0 0
Change , M -x +x +x
Equilibrium, M 0.40 - x x x
Lets express these concentrations in terms of the equilibrium constant:
Ka = x² / (0.40 - x )
Now the equilibrium constant is so small ( very little dissociation of HA ) that is safe to approximate 0.40 - x to 0.40,
7.3 x 10⁻⁶ = x² / 0.40 ⇒ x = √( 7.3 x 10⁻⁶ x 0.40 ) = 1.71 x 10⁻³
[H₃O⁺] = 1.71 x 10⁻³
Indeed 1.71 x 10⁻³ is small compared to 0.40 (0.4 %). To be a good approximation our value should be less or equal to 5 %.
pH = - log ( 1.71 x 10⁻³ ) = 3.8
Note: when the aprroximation is greater than 5 % we will need to solve the resulting quadratic equation.
A shared derived characteristics is usually a homologous structure, such as a backbone, that is shared by all organisms in a group.
Medium about 3 second? Not sure lol just need more points honestly lol