Answer:
3 × 10^8 m/s
Explanation:
The wavelength, can be calculated by using the following formula;
λ = v/f
Where;
λ = wavelength (m)
v = velocity/speed of light (m/s)
f = frequency (Hz)
According to the provided information in this question, λ = 600nm i.e. 600 × 10^-9m, f = 5.00 x 10^14 Hz
Hence, using λ = v/f
v = λ × f
v = 600 × 10^-9 × 5.00 x 10^14
v = 6 × 10^-7 × 5.00 x 10^14
v = 30 × 10^(-7 + 14)
v = 30 × 10^ (7)
v = 3 × 10^8 m/s
Answer:
B. 
Explanation:
The unit for rate is M/s while the unit for each molecule should be M. You can find the unit for k by putting the units for rate and the molecules into the equation
rate= k{X][Y]
M/s= k *
* 
k= (M/s) / (
)
k= 
You can also use this predetermined formula to solve this problem faster: k= 
Where n is the number of molecule. There are 3 molecule(2X and 1Y) so n=3, so
k= 
k=
=
= 
Answer:
The four resonance structures of the phenoxide ion are shown in the image attached
The conjugate base of cyclohexanol has only one resonance contributor, while
the conjugate base of phenol has four resonance contributors.
Explanation:
In organic chemistry, it is known that structures are more stable if they possess more resonance contributors. The greater the number of contributing canonical structures, the more stable the organic specie. Since the phenoxide ion has four contributing canonical structures, it is quite much more stable than cyclohexanol having only one contributing structure to its conjugate base. Hence the PKa(acid dissociation constant) of phenol is lesser than that of cyclohexanol. The conjugate base of phenol is stabilized by resonance.
Number 13 is D. Mendeleev. He was a Russian chemist and inventor who formulated the periodic table.
Answer:
Products would be on the right. Reactants would be on the left
Explanation: