Answer:
6.214g/cm³
Explanation:
The question is on density of a material
Density=mass/volume
Given, mass=87grams and volume= 14 cm³ density=?
Density=m/v 87/14 =6.214g/cm³
Answer:
- <u>The energy change would be 46kJ</u>
- <u>The energy would be absorbed</u>
Explanation:
The <em>energy change </em>during a chemical reation, i.e. the reaction energy, is equal to the chemical energy stored in the<em> bonds of the products </em>less the chemical energy stored in the <em>bonds of the reactants</em>.
Hence:
- <em>Energy change</em> = 478 kJ - 432kJ = 46kJ
The change is positive, this is, the chemical energy of the products is greater than the chemical energy of the reactants.
That corresponds to the second graph, where the level of the energy of the products in the graph is higher than the level of the energy of the reactants. Therefore, the conclusion is that the reaction <em>absorbed energy</em> and it is endothermic.
Answer: Instantaneous speed.
Explanation:
They will rise to the 2nd layer of the atmosphere where the temperature decreases by a lot and then they will blow up
Answer:
0.423m
Explanation:
Conversion to metric unit
d = 4.8 cm = 0.048m
Let water density be 
Let gravitational acceleration g = 9.8 m/s2
Let x (m) be the length that the spring is stretched in equilibrium, x is also the length of the cylinder that is submerged in water since originally at a non-stretching position, the cylinder barely touches the water surface.
Now that the system is in equilibrium, the spring force and buoyancy force must equal to the gravity force of the cylinder. We have the following force equation:

Where
N is the spring force,
is the buoyancy force, which equals to the weight
of the water displaced by the submerged portion of the cylinder, which is the product of water density
, submerged volume
and gravitational constant g. W = mg is the weight of the metal cylinder.

The submerged volume would be the product of cross-section area and the submerged length x

Plug that into our force equation and we have


