Answer: The energy required to remove an electron from a gaseous atom is called ionization energy.
Explanation:
Ionization energy is defined as the energy required to remove the most loosely bound electron from a neutral gaseous atom.
When we move across a period from left to right then there occurs a decrease in atomic size of the atoms. Therefore, ionization energy increases along a period but decreases along a group.
Smaller is the size of an atom more will be the force of attraction between its protons and electrons. Hence, more amount of energy is required to remove an electron.
Thus, we can conclude that the energy required to remove an electron from a gaseous atom is called ionization energy.
Answer:
See below
Explanation:
Hypotenuse is snake length 10 m
y coordinate = 10 sin 60 = 8.7 m
x coordinate = 10 cos 60 = 5m
Answer:
The displacement is zero miles
Explanation:
The displacement of an object that moves from point A to point B is defined as

Where d is the displacement of the object. The displacement does not depend on the trajectory of the object. It only depends on the linear distance between the end point and the starting point.
In this case we know that the person walks from home to work and then walks from work to home. Therefore, the total displacement is the linear distance between the point where its journey begins and the point where the route ends.
The tour begins on the front porch of your house and ends on the front porch of your house (when you return from work). If we call A to the front porch of the house then the displacement is:

The displacement is zero miles, since the person finishes the journey just where it started (front porch)
Answer:
The pressure exerted by the woman on the floor is 1.9061 x 10⁷ N/m²
Explanation:
Given;
mass of the woman, m = 55 kg
diameter of the circular heel, d = 6.0 mm
radius of the heel, r = 3.0 mm = 0.003 m
Cross-sectional area of the heel is given by;
A = πr²
A = π(0.003)²
A = 2.8278 x 10⁻⁵ m²
The weight of the woman is given by;
W = mg
W = 55 x 9.8
W = 539 N
The pressure exerted by the woman on the floor is given by;
P = F / A
P = W / A
P = 539 / (2.8278 x 10⁻⁵ )
P = 1.9061 x 10⁷ N/m²
Therefore, the pressure exerted by the woman on the floor is 1.9061 x 10⁷ N/m²