A. How much work is being done to hold the beam in place?
Work is the product of Force and Displacement. Since there
is no Displacement involved in just holding the beam in place, hence the work
is zero.
B. How much work was done to lift the beam?
In this case, force is simply equal to weight or mass
times gravity. Hence the work is:
Work = weight * displacement
Work = 500 lbf * 100 ft
Work = 50,000 lbf * ft
C. How much work would it take if the steel beam were
raised from 100 ft to 200ft?
The displacement is still 100 ft since 200 – 100 = 100 ft,
hence the work done is still similar in B which is:
<span>Work = 50,000 lbf * ft</span>
Answer:
<h2>Radiation</h2>
Explanation:
An x-ray emits radiation to see through the outer part of your body.
Hope this helps! <3
Explanation:
The turning effect of a force is called moment .
There are two types of moment. They are:-
- clockwise moment
- anti-clockwise moment
Magnitude 17 root
Hope it Helps! Please mark as Brainliest!
Answer:
3.67 N
Explanation:
From the question given above, the following data were obtained:
Charge of 1st object (q₁) = +15.5 μC
Charge of 2nd object (q₂) = –7.25 μC
Distance apart (r) = 0.525 m
Force (F) =?
Next, we shall convert micro coulomb (μC) to coulomb (C). This can be obtained as follow:
For the 1st object
1 μC = 1×10¯⁶ C
Therefore,
15.5 μC = 15.5 × 1×10¯⁶
15.5 μC = 15.5×10¯⁶ C
For the 2nd object:
1 μC = 1×10¯⁶ C
Therefore,
–7.25 μC = –7.25 × 1×10¯⁶
–7.25 μC = –7.25×10¯⁶ C
Finally, we shall determine the force. This can be obtained as follow:
Charge of 1st object (q₁) = +15.5×10¯⁶ C
Charge of 2nd object (q₂) = –7.25×10¯⁶ C
Distance apart (r) = 0.525 m
Electrical constant (K) = 9×10⁹ Nm²/C²
Force (F) =?
F = Kq₁q₂ / r²
F = 9×10⁹ × 15.5×10¯⁶ × 7.25×10¯⁶ / 0.525²
F = 3.67 N
Therefore, the force on the object is 3.67 N