1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
professor190 [17]
2 years ago
10

What is the velocity of a wave with a wavelength of 9 meters and a period of 0.006

Physics
1 answer:
Ipatiy [6.2K]2 years ago
8 0

Answer: 1,500m/s

Explanation:

Relationship existing between velocity of a wave (v), wavelength(¶) and frequency(f) is

v = f¶... (1)

Since Frequency (f) is the reciprocal of the period (T);

Frequency = 1/Period i.e F = 1/T... (2)

Substituting equation 2 into 1 we have;

v = 1/T × ¶

v = ¶/T

Given wavelength ¶ = 9m

Period T = 0.006s

v = 9/0.006

v = 1,500m/s

The velocity of the wave will be 1,500m/s

You might be interested in
If an object is thrown in an upward direction from the top of a building 160 ft. High at an initial speed of 21.82 mi/h what is
viktelen [127]
To solve this problem we are going to use tow kinematic equations for falling objects.
1. Kinematic equation for final velocity: V_{f}=V_{i}+gt
where
V_{f} is the final velocity 
V_{i} is the initial velocity 
g is the acceleration due to gravity 32 \frac{ft}{s^2}
t is the time 
2. Kinematic equation for distance: d=V_{i}t+ \frac{1}{2} gt^2
where
d is the distance 
V_{i} is the initial velocity 
V_{f} is the final velocity
g is the acceleration due to gravity 32 \frac{ft}{s^2}
t is the time 

First, we are going to convert 21.82 mi/h to ft/s:
21.82 \frac{mi}{h} =31.21 \frac{ft}{s}

Next, we are going to use the first equation to find how long it takes for the rock to reach its maximum height.
We know for our problem that the object is thrown in upward direction, so its velocity at its maximum height (before falling again) will be zero; therefore: V_{f}=0. We also know that it initial speed is 31.21 ft/s, so V_{i}=31.21. Lets replace those values in our formula to find t:
V_{f}=V_{i}+gt
0=31.21+(-32)t
-32t=-31.21
t= \frac{-31.21}{-32}
t=0.98seconds

Next, we are going to use that time in our second kinematic equation to find the distance the object reach at its maximum height:
d=V_{i}t+ \frac{1}{2} gt^2
d=31.21(0.98)+ \frac{1}{2} (-32)(0.98)^2
d=15.22ft 

Now we can add the height of the building and the maximum height of the object:
d=160+15.22=175.22ft

Next, we are going to use that height (distance) in our second kinematic equation one more time to fin how long it takes for the object to fall from its maximum height to the ground:
d=V_{i}t+ \frac{1}{2} gt^2
175.22=31.21t+ \frac{1}{2} (32)t^2
16t^2+31.21t-175.22=0
t=2.47 or t=-4.43
Since time cannot be negative, t=2.47 is the time it takes the object to fall to the ground. 

Finally, we can use that time in our first kinematic equation to find the final speed of the object when it hits the ground:
V_{f}=V_{i}+gt
V_{f}=31.21+(32)(2.47)
V_{f}=110.25 ft/s

We can conclude that the speed of the object when it hits the ground is 110.25 ft/s


5 0
2 years ago
if the flower pot in problem 3 falls off the windowsill and falls 20 meters downwards(i.e., is 10 meters from hitting the ground
morpeh [17]

Answer:

te energy is

Explanation:

4

8 0
2 years ago
The volume of a gas can be converted to moles by
BaLLatris [955]
B. Because I say so
6 0
2 years ago
How heavy is an object that displaces 400N of water in a pool?
julia-pushkina [17]
All we can say is that the object's volume is about 41 liters. That's the same as the volume of water displaced.

We can't say anything about the object's weight. There is no direct connection between the weight of the object and the weight of the water it displaces.
7 0
3 years ago
At a certain instant, the earth, the moon, and a stationary 1160 kg spacecraft lie at the vertices of an equilateral triangle wh
Afina-wow [57]

Answer:

W = 1.22 \times 10^9 J

Explanation:

Initial potential energy of the given spacecraft is given as

U = -\frac{GM_e m}{r} - \frac{GM_m m}{r}

so we have

U = - \frac{Gm}{r}(M_e + M_m)

so we have

M_e = 5.98 \times 10^{24} kg

M_m = 7.35 \times 10^{22} kg

m = 1160 kg

r = 3.84 \times 10^8 m

U = - \frac{(6.67 \times 10^{-11})(1160)}{3.84 \times 10^8}(5.98 \times 10^{24} + 7.35 \times 10^{22})

U = -1.22 \times 10^9 J

now total work done to move it to infinite is given

W = 0 - U

W = 1.22 \times 10^9 J

6 0
2 years ago
Other questions:
  • A negative oil droplet is held motionless in a millikan oil drop experiment. What happens if the switch is opened?
    9·1 answer
  • Help with this voltage drop?<br> I'd also like to know how you did it.
    8·1 answer
  • What is the car's average velocity (in m/s) in the interval between t = 1.0 s<br> to t = 1.5 s?
    15·1 answer
  • When you kick a ball by a force of 26.3 newtons, what is the magnitude and direction of the force that you experience?
    14·1 answer
  • What happens to molecules when heat is absorbed in a substance
    6·1 answer
  • A rifle of mass 2 kg is suspended by strings. The rifle fires a bullet of mass 0.01 kg at a speed of 200 m/s. The recoil velocit
    14·1 answer
  • Spiral galaxy rotation curves are generally fairly flat out to large distances. Suppose that spiral galaxies did not contain dar
    5·1 answer
  • Periodic trends vary as we move across the periodic table. In general, as you move across a row (from left to right) in the peri
    12·2 answers
  • A 1000-kg car comes to a stop without skidding. The car's brakes do 50,000 J of work to stop the car. Which of the following was
    7·1 answer
  • if a person can jump maximum along distance of 3m ,on the earth how far could be jump on the moon where acceleration due to grav
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!