Answer:
The value is 
Explanation:
From the question we are told that
The mass of the bullet is 
The mass of the wood is 
The height attained by the combined mass is 
Generally according to the law of energy conservation

Here
is the kinetic energy of the bullet before collision.
and
is the potential energy of the combined mass of bullet and wood at the height h which is mathematically represented as
![PE_m = [m_b + m_w] * g * h](https://tex.z-dn.net/?f=PE_m%20%20%3D%20%20%5Bm_b%20%20%2B%20m_w%5D%20%2A%20%20g%20%2A%20%20h)
So
![KE_b =PE_c = [0.005 + 0.90] * 9.8 *0.08](https://tex.z-dn.net/?f=KE_b%20%3DPE_c%20%20%20%3D%20%5B0.005%20%20%2B%200.90%5D%20%2A%209.8%20%2A0.08)
=> 
The ideal mechanical advantage (IMA) can be determined by the following equation:
IMA= Input distance/Output distance
The Input distance and Output distance are:
Input distance=220 meters
Output distance=110 meters
When you substitute in the equation of the ideal mechanical advantage (IMA), you obtain:
IMA= Input distance/Output distance
IMA= 220 meters/110 meters
IMA=2
they are called "cells"
hope this is the answer is what your looking for.
From someone who has taken physics this is, True
Answer:
metal> metalloids >nonmetals (Electrical conductivity)
Explanation:
Electrical conductivity of objects can be compared by the bonding energy of electrons in them.
Metals have less bonding energy of electrons, so even at room temperature their are significant number of free electrons to carry electrical current.
Nonmetals have a very high bonding energy of electrons, so at room temperature negligible number of free electrons are present so electrical conductivity is very low.
Metalloids have both metallic and non metallic features. The electron bonding energy falls in between that of metals and nonmetals. So electrical conductivity also lies in between metals and nonmetals.