Flourine I guess must be the answer
The volume of the stock solution that has a concentration of 1.5 M SO2 and is diluted to a 0.54 M solution with a volume of 0.18 L is 0.065L.
<h3>How to calculate volume?</h3>
The concentration of a solution can be calculated using the following formula:
C1V1 = C2V2
Where;
- C1 = initial concentration = 1.5M
- C2 = final concentration = 0.54M
- V1 = initial volume = ?
- V2 = final volume = 0.18L
1.5 × V1 = 0.54 × 0.18
1.5V1 = 0.0972
V1 = 0.0972 ÷ 1.5
V1 = 0.065L
Therefore, the volume of the stock solution that has a concentration of 1.5 M SO2 and is diluted to a 0.54 M solution with a volume of 0.18 L is 0.065L.
Learn more about volume at: brainly.com/question/1578538
12.0g x 1 mol / 63.546g = 0.188839581mol
<span>So, for every 1 mole, we have 6.022 x 10^23 of whatever we're measuring. This gives us a conversion factor of (1 mole / 6.022 x 10^23 atoms) or (6.022 x 10^23 atoms / 1 mole).
</span>
0.188839581 mol x (6.022 x 10^23 atoms) / 1 mol = 1.137191955 x 10^23
<span>Remember from before that we are limited to 3 significant figures. Since our calculations are complete, we can now round down to: 1.14 x 10^23 </span>
<span>That should be your answer!
Hope it helps!
xo</span>
A) Particles of gas move slower.
B) Gas changes to liquid.
C) The gas loses thermal energy.
D) Gas particles decrease.
Answer:
2%
Explanation:
oriented C-2, and (3) the minimizing of the number of ... (2) L. A. Mitscher, J. K. Paul, and L. Goldman,Experientia, 19, 195. (1963). ... SOzCeHiBr)3 in 147 ml. of anhydrous methanol containing 0.37 ... bicarbonate and saturated sodium chloride solution, and dried ... determined in 2% chloroform solution; infrared spectra on.