Answer:
The maximum height reached by the ball is 16.35 m.
Explanation:
Given;
initial velocity of the ball, u = 17.9 m/s
the final velocity of the ball at the maximum height, v = 0
The maximum height reached by the ball is given by;
v² = u² + 2gh
During upward motion, gravity is negative
v² = u² + 2(-g)h
v² = u² - 2gh
0 = u² - 2gh
2gh = u²
h = u² / 2g
h = (17.9)² / (2 x 9.8)
h = 16.35 m
Ttherefore, the maximum height reached by the ball is 16.35 m.
Answer:
5880lb-ft of work is done
Explanation:
The length of the heavy rope is given as 60ft and the weight per length is 0.7lb/ft.
Therefore, the total weight of the heavy rope is
60×0.7 =42lb.
The work done in pulling the heavy rope to the top of the building is w = Fd.
Where
F is force is measured in pounds;42lb
d is distance through which the heavy rope is to be pulled measured in feet; 140ft
w= 42lb×140ft= 5880lb-ft
hey guy
the vibration per second is frequency
then for 20 vibration time taken is 100 second
in 1 second 20/100 vibration took place
it means 0.2 is frequency
for time period , we have
t=1/f
=1/0.2
=5
Answer:
option A
Explanation:
given,
frequency is increased by 20%
we know,
...........(1)
where
x_n is the perpendicular distance between the point the interference pattern is obtained,
L is the distance between the center of the two point sources
and λ is the wavelength of light.
If the frequency is increased by 20%, then the number of nodal lines is increased by 20%.
From equation (1),we observe that the frequency is directly proportional to the number of nodal lines.
Hence, the correct answer is option A