Answer:
300 m
Explanation:
The train accelerate from the rest so u = 0 m/sec
Final speed that is v = 80 m/sec
Time t = 30 sec
The distance traveled by first plane = 1200 m
We know the equation of motion
where s is distance a is acceleration and u is initial velocity
Using this equation for first plane 

As the acceleration is same for both the plane so a for second plane will be 2.67 
The another equation of motion is
using this equation for second plane 
s = 300 m
Answer:
10 ms⁻¹
Explanation:
The amount of momentum that an object has is dependent upon two factors
- mass of the moving object
- speed of motion
In terms of an equation,
Momentum (P) = Mass(m)×velocity(v)
P = m×v
600 = 60 × v ⇒ v = 10 ms⁻¹
The density would increase because you still have the same amount of weight, but it is just packed more tightly in a smaller object.
In order to accelerate the dragster at a speed

, its engine must do a work equal to the increase in kinetic energy of the dragster. Since it starts from rest, the initial kinetic energy is zero, so the work done by the engine to accelerate the dragster to 100 m/s is

however, we must take into account also the fact that there is a frictional force doing work against the dragster, and the work done by the frictional force is:

and the sign is negative because the frictional force acts against the direction of motion of the dragster.
This means that the total work done by the dragster engine is equal to the work done to accelerate the dragster plus the energy lost because of the frictional force, which is

:

So, the power delivered by the engine is the total work divided by the time, t=7.30 s:

And since 1 horsepower is equal to 746 W, we can rewrite the power as
<span>Electrons display some properties of waves and while they reside outside of the nucleus, their positions cannot be known with certainty. </span>