<u>In modern physics</u>, as it was called "Stefan-Boltzmann law", the total energy radiated per unit surface area of a black body is directly proportional to the fourth power of the black body's temperature T
as:

where: P is the power (total energy radiated per second per square meter) and T is the temperature of a black body.
then we can make a ratio between the state of before quadruple (with subscript 1) and after (with subscript 2) as:

As

Then

then

- The factor will the total energy radiated per second per square meter increase = 256
Answer:
a) y₂ = 49.1 m
, t = 1.02 s
, b) y = 49.1 m
, t= 1.02 s
Explanation:
a) We will solve this problem with the missile launch kinematic equations, to find the maximum height, at this point the vertical speed is zero
² =
² - 2 g (y –yo)
The origin of the coordinate system is on the floor and the ball is thrown from a height
y-yo =
=
- g t
t =
/ g
t = 10 / 9.8
t = 1.02 s
b) the maximum height
y- 44.0 =
² / 2 g
y - 44.0 = 5.1
y = 5.1 +44.0
y = 49.1 m
The time is the same because it does not depend on the initial height
t = 1.02 s
Answer:
My answer is 7.2 km
Explanation:
When Stephen goes to the south and then to the east, he is drawing a right triangle, where the 4 km and 6 km sides are the cathetus of a right triangle.
Then we use the Pithagorean theorem to solve this problem. We need to find the hypotenuse.
c² = a² + b²
c² = 4² + 6²
c² = 16 + 36
c² = 52
c = 7.2 km
Explanation:
well there is nothing there and it could be different by diffrent objects, idk
Answer:
The plant would not reproduce because the flower uses the stigma to catch the pollen